Show that (p → q) ∧ (p → r) and p → (q ∧ r) are logically equivalent using
logical equivalence laws.
From the left hand side,
(p→q)∧(p→r)≡(¬p∨q)∧(¬p∨r)(p\rightarrow q)\land(p\rightarrow r)\equiv(\neg p\lor q)\land(\neg p\lor r)(p→q)∧(p→r)≡(¬p∨q)∧(¬p∨r) (by reduction of →\rightarrow→ )
≡¬p∨(q∧r)\equiv\neg p\lor(q\land r)≡¬p∨(q∧r) (by idempotence of ∨\lor∨ )
≡p→(q∧r)\equiv p\rightarrow(q\land r)≡p→(q∧r) (by reduction of →\rightarrow→ )
Therefore, (p→q)∧(p→r) and p→(q∧r)(p\rightarrow q)\land(p\rightarrow r)\space and \space p\rightarrow(q\land r) \\(p→q)∧(p→r) and p→(q∧r) are logically equivalent.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment