Show that (p → q) ∧ (p → r) and p → (q ∧ r) are logically equivalent using
logical equivalence laws.
From the left hand side,
"(p\\rightarrow q)\\land(p\\rightarrow r)\\equiv(\\neg p\\lor q)\\land(\\neg p\\lor r)" (by reduction of "\\rightarrow" )
"\\equiv\\neg p\\lor(q\\land r)" (by idempotence of "\\lor" )
"\\equiv p\\rightarrow(q\\land r)" (by reduction of "\\rightarrow" )
Therefore, "(p\\rightarrow q)\\land(p\\rightarrow r)\\space and \\space p\\rightarrow(q\\land r)\n\\\\" are logically equivalent.
Comments
Leave a comment