15.
Let x1,x2∈R and f(x)=−3x+4.
If f(x1)=f(x2)=>−3x1+4=−3x2+4
=>−3x1=−3x2=>x1=x2.
If x1=x2=>f(x1)=f(x2).
Then
f(x1)=f(x2)<=>x1=x2,x1,x2∈R The function f(x)=−3x+4 is one-to-one.
∀y∈R,y=−3x+4,∃x=−31y+34,x∈R The function f(x)=−3x+4 is onto.
The function f(x)=−3x+4 is one-to-one and is onto.
Therefore the function f(x)=−3x+4 is a bijection. Therefore the function f(x)=−3x+4 is invertibele
f(x)=−3x+4 Replace f(x) with y
y=−3x+4 Switch x and y
x=−3y+4 Solve for y
y=−31x+34 Replace y with f−1(x)
f−1(x)=−31x+34
16.
f(x)=x+2x+1 Domain: (−∞,−2)∪(−2,∞)
Replace f(x) with y
y=x+2x+1 Switch x and y
x=y+2y+1 Solve for y
xy+2x=y+1
y=−x−12x−1 Replace y with f−1(x)
f−1(x)=−x−12x−1
Comments