Question #279375

How many positive integers less than 100 is not a factor of 2,3 and 5?

1
Expert's answer
2022-01-10T16:20:56-0500

Let A,BA,B and CC denote the sets of positive integers that are divisible by 2, 3 and 5 respectively and less or equal to 100.

Then A=1002=50,B=1003=33,|A|=\lfloor \frac{100}2\rfloor=50, |B|=\lfloor \frac{100}3\rfloor=33, and C=1005=20.|C|=\lfloor \frac{100}5\rfloor=20.

If mm and nn are relatively prime then a aa is divisible by mm and nn iff it is divisible by mn.mn.

It follows that AB=1006=16,AC=10010=10,BC=10015=6,|A\cap B|=\lfloor \frac{100}6\rfloor=16, |A\cap C|=\lfloor \frac{100}{10}\rfloor=10, |B\cap C|=\lfloor \frac{100}{15}\rfloor=6, and ABC=10030=3.|A\cap B\cap C|=\lfloor \frac{100}{30}\rfloor=3.

Therefore, by Inclusion-exclusion principle, the number of positive integers that are divisible by 2 or 3 or 5 and less or equal to 100 is equal to

ABC=A+B+CABACBC+ABC=50+33+2016106+3=74.|A\cup B\cup C|=|A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|+|A\cap B\cap C| \\=50+33+20-16-10-6+3=74.

We conclude that the number of integers that are not divisible by 2 or 3 or 5 is equal to 10074=26.100-74=26.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS