relation R on the set A is called reflexive if ∀a∈A:aRa
∀n∈N:n=n and ∀m∈N:m≤m , then ∀(n,m)∈NXN:(n,m)R(n,m)⟹ R is reflexive
relation R on the set A is called reflexive if ∀a,b∈A:aRb⟹bRa
∀n,m∈N:n=m⟹m=n and ∀k,t∈N:k≤t⟹t≤k , then ∀n,m,k,t∈N:(n,m)R(k,t)⟹(k,t)R(n,m)⟹ R is symmetric
relation R on the set A is called antisymmetric if ∀a,b∈A:(aRb∧bRa)⟹a=b
∀k,t∈N:(k≤t)∧(t≤k)⟹k=t , then ∀n,m,k,t∈N:((n,m)R(k,t))∧((k,t)R(n,m))⟹(n,m)=(k,t)⟹ R is antisymmetric
relation R on the set A is called transitive if ∀a,b,c∈A:(aRb∧bRc)⟹aRc
∀n,m,t∈N:(n≤m)∧(m≤t)⟹k=m and ∀s,q,v∈N:(s=q)∧(q=v)⟹s=v , then ∀n,m,k,t,s,v∈N:((n,m)R(k,t))∧((k,t)R(s,v))⟹(n,m)R(s,v)⟹ R is transitive
Comments