Question #278531

Let R be a binary relation on N × N defined by (w, x ) R (y, z) if and only if w = y and x ≤ z . Is R reflexive? Is R symmetric? Is R antisymmetric? Is R transitive?


1
Expert's answer
2021-12-14T16:00:20-0500

relation R on the set A is called reflexive if aA:aRa\forall a\isin A:aRa

nN:n=n\forall n \in N:n=n and mN:mm\forall m \in N:m≤m , then (n,m)NXN:(n,m)R(n,m)    \forall (n,m) \in NXN: (n,m)R(n,m)\implies R is reflexive


relation R on the set A is called reflexive if a,bA:aRb    bRa\forall a,b\isin A:aRb\implies bRa

n,mN:n=m    m=n\forall n,m \in N:n=m\implies m=n and k,tN:kt    tk\forall k,t \in N:k≤t \implies t≤k , then n,m,k,tN:(n,m)R(k,t)    (k,t)R(n,m)    \forall n,m, k, t \in N: (n,m)R(k,t)\implies (k,t)R(n,m)\implies R is symmetric


relation R on the set A is called antisymmetric if a,bA:(aRbbRa)    a=b\forall a,b\isin A:(aRb\land bRa)\implies a=b

k,tN:(kt)(tk)    k=t\forall k,t \in N:(k≤t)\land (t≤k) \implies k=t , then n,m,k,tN:((n,m)R(k,t))((k,t)R(n,m))    (n,m)=(k,t)    \forall n,m, k, t \in N: ((n,m)R(k,t))\land ((k,t)R(n,m))\implies (n,m)=(k,t)\implies R is antisymmetric


relation R on the set A is called transitive if a,b,cA:(aRbbRc)    aRc\forall a,b,c\isin A:(aRb\land bRc)\implies aRc

n,m,tN:(nm)(mt)    k=m\forall n,m,t \in N:(n≤m)\land (m≤t) \implies k=m and s,q,vN:(s=q)(q=v)    s=v\forall s, q, v \in N:(s=q)\land (q=v) \implies s=v , then n,m,k,t,s,vN:((n,m)R(k,t))((k,t)R(s,v))    (n,m)R(s,v)    \forall n,m, k, t, s, v \in N: ((n,m)R(k,t))\land ((k,t)R(s,v))\implies (n,m)R(s,v) \implies R is transitive


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS