Use any of the two proof methods to prove:
((~a^b)^(b^c))^~b
Direct Proof:
((¬a∧b)∧(b∧c))∧¬b≡¬a∧b∧c∧¬b≡¬a∧c∧0≡0((\neg a\land b)\land(b\land c))\land \neg b\equiv \neg a\land b\land c \land \neg b\equiv \neg a \land c \land 0\equiv 0((¬a∧b)∧(b∧c))∧¬b≡¬a∧b∧c∧¬b≡¬a∧c∧0≡0
Proof by Contrapositive:
¬(((¬a∧b)∧(b∧c))∧¬b)≡¬(¬a∧c∧0)≡¬0≡1\neg(((\neg a\land b)\land(b\land c))\land \neg b)\equiv \neg (\neg a \land c \land 0)\equiv \neg0\equiv 1¬(((¬a∧b)∧(b∧c))∧¬b)≡¬(¬a∧c∧0)≡¬0≡1
so,
((¬a∧b)∧(b∧c))∧¬b≡0((\neg a\land b)\land(b\land c))\land \neg b\equiv 0((¬a∧b)∧(b∧c))∧¬b≡0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments