Use any of the two proof methods to prove:
((~a^b)^(b^c))^~b
Direct Proof:
"((\\neg a\\land b)\\land(b\\land c))\\land \\neg b\\equiv \\neg a\\land b\\land c \\land \\neg b\\equiv \\neg a \\land c \\land 0\\equiv 0"
Proof by Contrapositive:
"\\neg(((\\neg a\\land b)\\land(b\\land c))\\land \\neg b)\\equiv \\neg (\\neg a \\land c \\land 0)\\equiv \\neg0\\equiv 1"
so,
"((\\neg a\\land b)\\land(b\\land c))\\land \\neg b\\equiv 0"
Comments
Leave a comment