Question #278244

Use any of the two proof methods to prove:

((~a^b)^(b^c))^~b

1
Expert's answer
2021-12-14T14:35:02-0500

Direct Proof:

((¬ab)(bc))¬b¬abc¬b¬ac00((\neg a\land b)\land(b\land c))\land \neg b\equiv \neg a\land b\land c \land \neg b\equiv \neg a \land c \land 0\equiv 0


Proof by Contrapositive:

¬(((¬ab)(bc))¬b)¬(¬ac0)¬01\neg(((\neg a\land b)\land(b\land c))\land \neg b)\equiv \neg (\neg a \land c \land 0)\equiv \neg0\equiv 1

so,

((¬ab)(bc))¬b0((\neg a\land b)\land(b\land c))\land \neg b\equiv 0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS