Show that each of these conditional statements is a tautology by using truth tables.
a) (p ∧ q) → p b) p → (p ∨ q)
c) ¬p → (p → q) d) (p ∧ q) → (p → q)
e) ¬(p → q) → p f) ¬(p → q) → ¬q
Let us show that each of these conditional statements is a tautology by using truth tables.
a) (p ∧ q) → p
"\\begin{array}{||c|c||c|c||} \n\\hline\\hline \np & q &p \u2227 q & (p \u2227 q) \u2192 p \\\\ \n\\hline\\hline \n0 & 0 & 0 & 1\\\\ \n\\hline \n0 & 1 & 0 & 1\n \\\\ \\hline \n1 & 0 & 0 & 1\\\\ \n\\hline \n1 & 1 & 1 & 1\\\\ \n\\hline\\hline \n\\end{array}"
Since the last column contains only 1, we conclude that this formula is a tautology.
b) p → (p ∨ q)
"\\begin{array}{||c|c||c|c||} \n\\hline\\hline \np & q &p \\lor q &p \u2192 (p \u2228 q) \\\\ \n\\hline\\hline \n0 & 0 & 0 & 1\\\\ \n\\hline \n0 & 1 & 1 & 1\n \\\\ \\hline \n1 & 0 & 1 & 1\\\\ \n\\hline \n1 & 1 & 1 & 1\\\\ \n\\hline\\hline \n\\end{array}"
Since the last column contains only 1, we conclude that this formula is a tautology.
c) ¬p → (p → q)
"\\begin{array}{||c|c||c|c|c||} \n\\hline\\hline \np & q &\\neg p & p \\to q &\\neg p \u2192 (p \\to q) \\\\ \n\\hline\\hline \n0 & 0 & 1 & 1 & 1\\\\ \n\\hline \n0 & 1 & 1 & 1 & 1\n \\\\ \\hline \n1 & 0 & 0 & 0 & 1\\\\ \n\\hline \n1 & 1 & 0 & 1 &1\\\\ \n\\hline\\hline \n\\end{array}"
Since the last column contains only 1, we conclude that this formula is a tautology.
d) (p ∧ q) → (p → q)
"\\begin{array}{||c|c||c|c|c||} \n\\hline\\hline \np & q &p \u2227 q & p \\to q &(p \u2227 q) \u2192 (p \u2192 q)\\\\ \n\\hline\\hline \n0 & 0 & 0 & 1 & 1\\\\ \n\\hline \n0 & 1 & 0 & 1 & 1\n \\\\ \\hline \n1 & 0 & 0 & 0 & 1\\\\ \n\\hline \n1 & 1 & 1 & 1 &1\\\\ \n\\hline\\hline \n\\end{array}"
Since the last column contains only 1, we conclude that this formula is a tautology.
e) ¬(p → q) → p
"\\begin{array}{||c|c||c|c|c||} \n\\hline\\hline \np & q & p \\to q& \\neg (p \u2192 q) & \\neg(p \u2192 q) \u2192 p \\\\ \n\\hline\\hline \n0 & 0 & 1 & 0 & 1\\\\ \n\\hline \n0 & 1 & 1 & 0 & 1\n \\\\ \\hline \n1 & 0 & 0 & 1 & 1\\\\ \n\\hline \n1 & 1 & 1 & 0 &1\\\\ \n\\hline\\hline \n\\end{array}"
Since the last column contains only 1, we conclude that this formula is a tautology.
f) ¬(p → q) → ¬q
"\\begin{array}{||c|c||c|c|c|c||} \n\\hline\\hline \np & q & p \\to q& \\neg (p \u2192 q) & \\neg q & \\neg (p \u2192 q) \\to \\neg q\\\\ \n\\hline\\hline \n0 & 0 & 1 & 0 & 1 & 1\\\\ \n\\hline \n0 & 1 & 1 & 0 & 0 & 1\n \\\\ \\hline \n1 & 0 & 0 & 1 & 1 & 1\\\\ \n\\hline \n1 & 1 & 1 & 0 & 0 & 1\\\\ \n\\hline\\hline \n\\end{array}"
Since the last column contains only 1, we conclude that this formula is a tautology.
Comments
Leave a comment