Question #275095

Use generating functions to solve the recurrence relation an = 4an−1 − 4an−2 +n2

, where a0 = 2, a1 = 5.



1
Expert's answer
2021-12-10T15:10:49-0500
an4an1+4an2=n2a_n - 4a_{n−1} + 4a_{n−2} = n^2n=2anxn4n=2an1xn+4n=2an2xn=n=2nn2xn\displaystyle\sum_{n=2}^{\infin}a_nx^n-4\displaystyle\sum_{n=2}^{\infin}a_{n-1}x^{n}+4\displaystyle\sum_{n=2}^{\infin}a_{n-2}x^{n}=\displaystyle\sum_{n=2}^nn^2x^n

From the table

n=0nn2xn=0+x+22x2+32x3+...=x(x+1)(1x)3\displaystyle\sum_{n=0}^nn^2x^n=0+x+2^2x^2+3^2x^3+...=\dfrac{x(x+1)}{(1-x)^3}

G(x)25x4x(G(x)2)+4x2G(x)G(x)-2-5x-4x(G(x)-2)+4x^2G(x)

=x(x+1)(1x)3x=\dfrac{x(x+1)}{(1-x)^3}-x

G(x)(14x+4x2)=x(x+1)(1x)34x+2G(x)(1-4x+4x^2)=\dfrac{x(x+1)}{(1-x)^3}-4x+2

G(x)=x2+x(1x)3(12x)2+212xG(x)=\dfrac{x^2+x}{(1-x)^3(1-2x)^2}+\dfrac{2}{1-2x}

x2+x(1x)3(12x)2=A(1x)3+B(1x)2+C1x\dfrac{x^2+x}{(1-x)^3(1-2x)^2}=\dfrac{A}{(1-x)^3}+\dfrac{B}{(1-x)^2}+\dfrac{C}{1-x}

+D(12x)2+E12x+\dfrac{D}{(1-2x)^2}+\dfrac{E}{1-2x}




A(12x)2+B(1x)(12x)2A(1-2x)^2+B(1-x)(1-2x)^2

+C(1x)2(12x)2+D(1x)3+C(1-x)^2(1-2x)^2+D(1-x)^3

+E(1x)3(12x)=x2+x(1x)3(12x)2+E(1-x)^3(1-2x)=\dfrac{x^2+x}{(1-x)^3(1-2x)^2}

x=0:A+B+C+D+E=0x=0:A+B+C+D+E=0

x=1:9A+18B+36C+8D+24E=0x=-1:9A+18B+36C+8D+24E=0

x=1:A=2x=1:A=2

x=1/2:D=6x=1/2:D=6

x=2:9A9B+9CD+3E=6x=2:9A-9B+9C-D+3E=6



A=2,B=3,C=3,D=6,E=2A=2, B=-3, C=-3, D=6, E=-2



G(x)=2(1x)33(1x)231xG(x)=\dfrac{2}{(1-x)^3}-\dfrac{3}{(1-x)^2}-\dfrac{3}{1-x}

+6(12x)2212x+212x+\dfrac{6}{(1-2x)^2}-\dfrac{2}{1-2x}+\dfrac{2}{1-2x}

2(1x)32(n+22)3(1x)23(n+1)31x36(12x)26(n+1)(2n)\def\arraystretch{1.5} \begin{array}{c:c} \dfrac{2}{(1-x)^3} & 2\dbinom{n+2}{2} \\ \\ -\dfrac{3}{(1-x)^2} & -3(n+1)\\ \\ -\dfrac{3}{1-x} & -3 \\ \\ \dfrac{6}{(1-2x)^2} & 6(n+1)(2^n) \end{array}an=2(n+22)3(n+1)3+6(2n)(n+1)a_n=2\dbinom{n+2}{2}-3(n+1)-3+6(2^n)(n+1)




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS