Question #273974

Show that the relation R = ∅ on the empty set S = ∅ is


reflexive, symmetric, and transitive.

1
Expert's answer
2021-12-01T17:28:30-0500

A binary relation RR is called reflexive if (a,a)R(a,a)\in R for any aS.a\in S. Since S=S=\emptyset, it contains no elements. Therefore, the statement "a=Sa\in \emptyset=S" is false. Consequently, the implication "if aSa\in S then (a,a)R(a,a)\in R" is true for any aS.a\in S. It follows that R=R=\emptyset is reflexive relation on the set S=S=\emptyset.


A binary relation RR on a set SS is called symmetric if (a,b)R(a,b)\in R implies (b,a)R(b,a)\in R. Taking into account that R=R=\emptyset, we conclude that the statement "(a,b)R(a,b)\in R" is false. Therefore, the implication "if (a,b)R(a,b)\in R then (b,a)R(b,a)\in R" is true. So, the relation R=R=\emptyset is symmetric.


A binary relation RR on a set SS is called transitive if (a,b)R(a,b)\in R and (b,c)R(b,c)\in R implies (a,c)R(a,c)\in R. Taking into account that R=R=\emptyset, we conclude that the statement "(a,b)R(a,b)\in R and (b,c)R(b,c)\in R" is false. Therefore, the implication "if (a,b)R(a,b)\in R and (b,c)R(b,c)\in R then (a,c)R(a,c)\in R" is true. So, the relation R=R=\emptyset is transitive.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS