2. Use generating functions to solve the recurrence relation an = 4an−1 − 4an−2 + n2, where a0 = 2, a1 = 5.
From the table
"\\displaystyle\\sum_{n=0}^nn^2x^n=0+x+2^2x^2+3^2x^3+...=\\dfrac{x(x+1)}{(1-x)^3}""G(x)-2-5x-4x(G(x)-2)+4x^2G(x)"
"=\\dfrac{x(x+1)}{(1-x)^3}-x"
"G(x)(1-4x+4x^2)=\\dfrac{x(x+1)}{(1-x)^3}-4x+2"
"G(x)=\\dfrac{x^2+x}{(1-x)^3(1-2x)^2}+\\dfrac{2}{1-2x}"
"\\dfrac{x^2+x}{(1-x)^3(1-2x)^2}=\\dfrac{A}{(1-x)^3}+\\dfrac{B}{(1-x)^2}+\\dfrac{C}{1-x}"
"+\\dfrac{D}{(1-2x)^2}+\\dfrac{E}{1-2x}"
"+C(1-x)^2(1-2x)^2+D(1-x)^3"
"+E(1-x)^3(1-2x)=\\dfrac{x^2+x}{(1-x)^3(1-2x)^2}"
"x=0:A+B+C+D+E=0"
"x=-1:9A+18B+36C+8D+24E=0"
"x=1:A=2"
"x=1\/2:D=6"
"x=2:9A-9B+9C-D+3E=6"
"A=2, B=-3, C=-3, D=6, E=-2"
"+\\dfrac{6}{(1-2x)^2}-\\dfrac{2}{1-2x}+\\dfrac{2}{1-2x}"
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n \\dfrac{2}{(1-x)^3} & 2\\dbinom{n+2}{2} \\\\ \\\\\n -\\dfrac{3}{(1-x)^2} & -3(n+1)\\\\\n \\\\\n -\\dfrac{3}{1-x} & -3 \\\\ \\\\\n\\dfrac{6}{(1-2x)^2} & 6(n+1)(2^n)\n\\end{array}"
Comments
Leave a comment