Consider a recurrence relation an = -3an-1 + an-2 for n = 1,2,3,4,… with initial conditions a1 = 4 and a2 = 2. Calculate a5.
Consider a recurrence relation an=−3an−1+an−2a_n = -3a_{n-1} + a_{n-2}an=−3an−1+an−2 with initial conditions a1=4a_1 = 4a1=4 and a2=2.a_2 = 2.a2=2. Let us calculate a5.a_5.a5. It follows that a3=−3a2+a1=−3⋅2+4=−2.a_3 = -3a_{2} + a_{1}=-3\cdot2+4=-2.a3=−3a2+a1=−3⋅2+4=−2. Then a4=−3a3+a2=−3⋅(−2)+2=8.a_4 = -3a_{3} + a_{2}=-3\cdot(-2)+2=8.a4=−3a3+a2=−3⋅(−2)+2=8. We conclude that a5=−3a4+a3=−3⋅8−2=−26.a_5 = -3a_{4} + a_{3}=-3\cdot 8-2=-26.a5=−3a4+a3=−3⋅8−2=−26.
Answer: a5=−26.a_5=-26.a5=−26.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments