What and Define Equivalent formula or laws of algebra of propositions
If
"\\begin{aligned}\n&p \\leftrightarrow q \\equiv(p \\rightarrow q) \\wedge(q \\rightarrow p) \\\\\n&p \\leftrightarrow q \\equiv(p \\wedge q) \\vee(\\neg p \\vee \\neg p)\n\\end{aligned}"
Then
"\\begin{gathered}\n(\\neg p \\vee q) \\wedge(p \\vee \\neg q)(\\text { Commutation }) \\\\\n(\\neg p \\vee q) \\wedge(\\neg q \\vee p) \\text { (Implication) } \\\\\n(p \\rightarrow q) \\wedge(q \\rightarrow p) \\text { (Equivalence) } \\\\\n\\qquad \\begin{aligned}\np & \\leftrightarrow q \\equiv(\\text { Equivalence }) \\\\\n(p \\wedge q) & \\vee(\\neg p \\wedge \\neg q)(\\text { DeMorgan }) \\\\\n(p \\wedge q) & \\vee \\neg(p \\vee q)(\\text { Commutation }) \\\\\n\\neg(p \\wedge q) & \\vee(p \\wedge q)(\\text { Implication }) \\\\\n&(p \\wedge q) \\rightarrow(p \\wedge q)\n\\end{aligned}\n\\end{gathered}"
Comments
Leave a comment