What and Define Equivalent formula or laws of algebra of propositions
If
p↔q≡(p→q)∧(q→p)p↔q≡(p∧q)∨(¬p∨¬p)\begin{aligned} &p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p) \\ &p \leftrightarrow q \equiv(p \wedge q) \vee(\neg p \vee \neg p) \end{aligned}p↔q≡(p→q)∧(q→p)p↔q≡(p∧q)∨(¬p∨¬p)
Then
(¬p∨q)∧(p∨¬q)( Commutation )(¬p∨q)∧(¬q∨p) (Implication) (p→q)∧(q→p) (Equivalence) p↔q≡( Equivalence )(p∧q)∨(¬p∧¬q)( DeMorgan )(p∧q)∨¬(p∨q)( Commutation )¬(p∧q)∨(p∧q)( Implication )(p∧q)→(p∧q)\begin{gathered} (\neg p \vee q) \wedge(p \vee \neg q)(\text { Commutation }) \\ (\neg p \vee q) \wedge(\neg q \vee p) \text { (Implication) } \\ (p \rightarrow q) \wedge(q \rightarrow p) \text { (Equivalence) } \\ \qquad \begin{aligned} p & \leftrightarrow q \equiv(\text { Equivalence }) \\ (p \wedge q) & \vee(\neg p \wedge \neg q)(\text { DeMorgan }) \\ (p \wedge q) & \vee \neg(p \vee q)(\text { Commutation }) \\ \neg(p \wedge q) & \vee(p \wedge q)(\text { Implication }) \\ &(p \wedge q) \rightarrow(p \wedge q) \end{aligned} \end{gathered}(¬p∨q)∧(p∨¬q)( Commutation )(¬p∨q)∧(¬q∨p) (Implication) (p→q)∧(q→p) (Equivalence) p(p∧q)(p∧q)¬(p∧q)↔q≡( Equivalence )∨(¬p∧¬q)( DeMorgan )∨¬(p∨q)( Commutation )∨(p∧q)( Implication )(p∧q)→(p∧q)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments