⋃ 𝐴𝑖
∝
1 and ⋂ 𝐴𝑖
∞
1
a) 𝐴𝑖 = {𝑖, 𝑖 + 1,𝑖 + 2, … }
b) 𝐴𝑖 = {0,𝑖}
c) 𝐴𝑖 = {−𝑖, − 𝑖 + 1, … , −1, 0, 1, … , 𝑖 − 1, 𝑖}
d) 𝐴𝑖 = {−𝑖, 𝑖}
Let us find "\\bigcup\\limits_{i=1}^{\\infty} A_i" and "\\bigcap\\limits_{i=1}^{\\infty} A_i" for the following sets "A_i."
a) If "\ud835\udc34_\ud835\udc56 = \\{\ud835\udc56, \ud835\udc56 + 1,\ud835\udc56 + 2, \u2026 \\}" then "\\bigcup\\limits_{i=1}^{\\infty} A_i=A_1=\\mathbb N" and "\\bigcap\\limits_{i=1}^{\\infty} A_i=\\emptyset."
b) For "\ud835\udc34_\ud835\udc56 = \\{0,\ud835\udc56\\}" we get that "\\bigcup\\limits_{i=1}^{\\infty} A_i=\\{0,1,2,...\\}=\\mathbb N_0" and "\\bigcap\\limits_{i=1}^{\\infty} A_i=\\{0\\}."
c) If "\ud835\udc34_\ud835\udc56 = \\{\u2212\ud835\udc56, \u2212 \ud835\udc56 + 1, \u2026 , \u22121, 0, 1, \u2026 , \ud835\udc56 \u2212 1, \ud835\udc56\\}" then "\\bigcup\\limits_{i=1}^{\\infty} A_i=\\mathbb Z" and "\\bigcap\\limits_{i=1}^{\\infty} A_i=A_1=\\{-1,0,1\\}."
d) For "\ud835\udc34_\ud835\udc56 = \\{\u2212\ud835\udc56, \ud835\udc56\\}" we get that "\\bigcup\\limits_{i=1}^{\\infty} A_i=\\mathbb Z\\setminus\\{0\\}" and "\\bigcap\\limits_{i=1}^{\\infty} A_i=\\emptyset."
Comments
Leave a comment