β π΄π
β
1 and β π΄π
β
1
a) π΄π = {π, π + 1,π + 2, β¦ }
b) π΄π = {0,π}
c) π΄π = {βπ, β π + 1, β¦ , β1, 0, 1, β¦ , π β 1, π}
d) π΄π = {βπ, π}
Let us find "\\bigcup\\limits_{i=1}^{\\infty} A_i" and "\\bigcap\\limits_{i=1}^{\\infty} A_i" for the following sets "A_i."
a) If "\ud835\udc34_\ud835\udc56 = \\{\ud835\udc56, \ud835\udc56 + 1,\ud835\udc56 + 2, \u2026 \\}" then "\\bigcup\\limits_{i=1}^{\\infty} A_i=A_1=\\mathbb N" and "\\bigcap\\limits_{i=1}^{\\infty} A_i=\\emptyset."
b) For "\ud835\udc34_\ud835\udc56 = \\{0,\ud835\udc56\\}" we get that "\\bigcup\\limits_{i=1}^{\\infty} A_i=\\{0,1,2,...\\}=\\mathbb N_0" and "\\bigcap\\limits_{i=1}^{\\infty} A_i=\\{0\\}."
c) If "\ud835\udc34_\ud835\udc56 = \\{\u2212\ud835\udc56, \u2212 \ud835\udc56 + 1, \u2026 , \u22121, 0, 1, \u2026 , \ud835\udc56 \u2212 1, \ud835\udc56\\}" then "\\bigcup\\limits_{i=1}^{\\infty} A_i=\\mathbb Z" and "\\bigcap\\limits_{i=1}^{\\infty} A_i=A_1=\\{-1,0,1\\}."
d) For "\ud835\udc34_\ud835\udc56 = \\{\u2212\ud835\udc56, \ud835\udc56\\}" we get that "\\bigcup\\limits_{i=1}^{\\infty} A_i=\\mathbb Z\\setminus\\{0\\}" and "\\bigcap\\limits_{i=1}^{\\infty} A_i=\\emptyset."
Comments
Leave a comment