I. Create a truth table for all of the 11 Logical Equivalence.
II. Find if the following are logically equivalent
1.(~p v q) ^ (~q) <=> ~(p v q)
2.(p ^ ~q) v (~p v q) <=> T
Let us create a truth table for all of the following formulas and find if the following are logically equivalent.
1. "f(p,q)=(\\sim p \\lor q) \\land (\\sim q) \\leftrightarrow \\sim(p \\lor q)"
"\\begin{array}{||c|c||c|c|c|c|c|c||}\n\\hline\\hline\np & q & \\sim q & \\sim p &\\sim p \\lor q & \\sim (p \\lor q) & (\\sim p \\lor q) \\land (\\sim q) & f(p,q) \\\\\n\\hline\\hline\n0 & 0 & 1 & 1 & 1 & 1 & 1 & 1\\\\\n\\hline\n0 & 1 & 0 & 1 & 1 & 0 & 0 & 1\\\\\n\\hline\n1 & 0 & 1 & 0 & 0 & 0 & 0 & 1\\\\\n\\hline\n1 & 1 & 0 & 0 & 1 &0 & 0 & 1\\\\\n\\hline\\hline\n\\end{array}"
Since the formula "f(p,q)" is tautology, we conclude that the formulas "(\\sim p \\lor q) \\land (\\sim q)" and "\\sim(p \\lor q)" are logically equivalent.
2. "f(p,q)=(p \\land \\sim q) \\lor (\\sim p \\lor q) \\leftrightarrow T"
"\\begin{array}{||c|c||c|c|c|c|c|c||}\n\\hline\\hline\np & q & \\sim q &\\sim p & p \\land \\sim q & \\sim p \\lor q & (p \\land \\sim q)\\lor (\\sim p \\lor q )&f(p,q)\\\\\n\\hline\\hline\n0 & 0 & 1 & 1 & 0 & 1 & 1 & 1\\\\\n\\hline\n0 & 1 & 0 & 1 & 0 & 1 & 1 & 1\\\\\n\\hline\n1 & 0 & 1 & 0 & 1 & 0 & 1 & 1\\\\\n\\hline\n1 & 1 & 0 & 0 & 0 & 1 & 1 & 1\\\\\n\\hline\\hline\n\\end{array}"
Since the formula "f(p,q)" is tautology, we conclude that the formulas "(p \\land \\sim q) \\lor (\\sim p \\lor q)" and "T" are logically equivalent.
Comments
Leave a comment