Answer to Question #269603 in Discrete Mathematics for maven

Question #269603

I. Create a truth table for all of the 11 Logical Equivalence.

II. Find if the following are logically equivalent

   1.(~p v q) ^ (~q) <=> ~(p v q)

   2.(p ^ ~q) v (~p v q) <=> T


1
Expert's answer
2021-11-22T14:25:42-0500

Let us create a truth table for all of the following formulas and find if the following are logically equivalent.


1. f(p,q)=(pq)(q)(pq)f(p,q)=(\sim p \lor q) \land (\sim q) \leftrightarrow \sim(p \lor q)


   pqqppq(pq)(pq)(q)f(p,q)00111111010110011010000111001001\begin{array}{||c|c||c|c|c|c|c|c||} \hline\hline p & q & \sim q & \sim p &\sim p \lor q & \sim (p \lor q) & (\sim p \lor q) \land (\sim q) & f(p,q) \\ \hline\hline 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1\\ \hline 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1\\ \hline 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1\\ \hline 1 & 1 & 0 & 0 & 1 &0 & 0 & 1\\ \hline\hline \end{array}

Since the formula f(p,q)f(p,q) is tautology, we conclude that the formulas (pq)(q)(\sim p \lor q) \land (\sim q) and (pq)\sim(p \lor q) are logically equivalent.


2. f(p,q)=(pq)(pq)Tf(p,q)=(p \land \sim q) \lor (\sim p \lor q) \leftrightarrow T


pqqppqpq(pq)(pq)f(p,q)00110111010101111010101111000111\begin{array}{||c|c||c|c|c|c|c|c||} \hline\hline p & q & \sim q &\sim p & p \land \sim q & \sim p \lor q & (p \land \sim q)\lor (\sim p \lor q )&f(p,q)\\ \hline\hline 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1\\ \hline 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1\\ \hline 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1\\ \hline 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1\\ \hline\hline \end{array}

Since the formula f(p,q)f(p,q) is tautology, we conclude that the formulas (pq)(pq)(p \land \sim q) \lor (\sim p \lor q) and TT are logically equivalent.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment