for R1: a - b is divided by 3
for R2: a - b is divided by 4
a)
R1∪R2={(a,b)∣a≡b(mod 3) or a≡b(mod 4)}
b)
R1∩R2={(a,b)∣a≡b(mod 3) and a≡b(mod 4)}={(a,b)∣a≡b(mod 12) }
c)
R1−R2={(a,b)∣a≡b(mod 3) and not a≡b(mod 4)}
d)
R2−R1={(a,b)∣a≡b(mod 4) and not a≡b(mod 3)}
e)
Symmetric Difference: R1 ⊕ R2 = {(a, b) | (a, b) ∈ R1 or (a, b) ∈ R2 but (a, b) ∈/ R1 ∩ R2}
R1⊕R2={(a,b)∣a≡b(mod 3) or a≡b(mod 4) but not a≡b(mod 12)}
Comments
Leave a comment