Let R1 and R2 be the “congruent modulo 3” and the “congruent modulo 4”
relations, respectively, on the set of integers. That is, R1 = {(a, b) | a ≡ b (mod
3)} and R2 = {(a, b) | a ≡ b (mod 4)}. Find
a) R1 ∪ R2 b) R1 ∩ R2 c) R1 − R2 d) R2 − R1 e) R1 ⊕ R2
for R1: a - b is divided by 3
for R2: a - b is divided by 4
a)
"R_1 \u222a R_2=\\{(a,b)|a \u2261 b (mod \\ 3)\\ or\\ a \u2261 b (mod\\ 4)\\}"
b)
"R_1 \u2229 R_2=\\{(a,b)|a \u2261 b (mod \\ 3)\\ and\\ a \u2261 b (mod\\ 4)\\}=\\{(a,b)|a \u2261 b (mod \\ 12)\\ \\}"
c)
"R_1 \u2212 R_2=\\{(a,b)|a \u2261 b (mod \\ 3)\\ and\\ \\ not\\ a \u2261 b (mod\\ 4)\\}"
d)
"R_2 \u2212 R_1=\\{(a,b)|a \u2261 b (mod \\ 4)\\ and\\ \\ not\\ a \u2261 b (mod\\ 3)\\}"
e)
Symmetric Difference: R1 ⊕ R2 = {(a, b) | (a, b) ∈ R1 or (a, b) ∈ R2 but (a, b) "\\notin" R1 ∩ R2}
"R1 \u2295 R2=\\{(a,b)|a \u2261 b (mod \\ 3)\\ or\\ a \u2261 b (mod\\ 4)\\ but\\ not\\ a \u2261 b (mod \\ 12)\\}"
Comments
Leave a comment