Answer to Question #267864 in Discrete Mathematics for Jaishree

Question #267864

Let R1 and R2 be the “congruent modulo 3” and the “congruent modulo 4”


relations, respectively, on the set of integers. That is, R1 = {(a, b) | a ≡ b (mod


3)} and R2 = {(a, b) | a ≡ b (mod 4)}. Find


a) R1 ∪ R2 b) R1 ∩ R2 c) R1 − R2 d) R2 − R1 e) R1 ⊕ R2

1
Expert's answer
2021-11-23T15:36:37-0500

for R1: a - b is divided by 3

for R2: a - b is divided by 4


a)

R1R2={(a,b)ab(mod 3) or ab(mod 4)}R_1 ∪ R_2=\{(a,b)|a ≡ b (mod \ 3)\ or\ a ≡ b (mod\ 4)\}


b)

R1R2={(a,b)ab(mod 3) and ab(mod 4)}={(a,b)ab(mod 12) }R_1 ∩ R_2=\{(a,b)|a ≡ b (mod \ 3)\ and\ a ≡ b (mod\ 4)\}=\{(a,b)|a ≡ b (mod \ 12)\ \}


c)

R1R2={(a,b)ab(mod 3) and  not ab(mod 4)}R_1 − R_2=\{(a,b)|a ≡ b (mod \ 3)\ and\ \ not\ a ≡ b (mod\ 4)\}


d)

R2R1={(a,b)ab(mod 4) and  not ab(mod 3)}R_2 − R_1=\{(a,b)|a ≡ b (mod \ 4)\ and\ \ not\ a ≡ b (mod\ 3)\}


e)

Symmetric Difference: R1 ⊕ R2 = {(a, b) | (a, b) ∈ R1 or (a, b) ∈ R2 but (a, b) \notin R1 ∩ R2}

R1R2={(a,b)ab(mod 3) or ab(mod 4) but not ab(mod 12)}R1 ⊕ R2=\{(a,b)|a ≡ b (mod \ 3)\ or\ a ≡ b (mod\ 4)\ but\ not\ a ≡ b (mod \ 12)\}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment