Question #267829

2.     Let S = { :(a1a2a3a4∈ N and 0 ≤ ≤ 9 for each i = 1, 2, 3, 4}. In other words, S is the set of all 4-digit strings with each digit between 0 an 9. 

(a)  Show that the function f : S → S defined by f(a1a2a3a4) =a4a3a2a1  is a bijection.

(b)  (Note that the function reverses the string. For example, f(9527) = 7259) Find f-1 .  Specifically, what is f-1.(a1a2a3a4)?



1
Expert's answer
2021-11-23T09:47:50-0500

(a)  Let us show that the function f:SSf : S → S defined by f(a1a2a3a4)=a4a3a2a1f(a_1a_2a_3a_4) =a_4a_3a_2a_1   is a bijection.

Let f(a1a2a3a4)=f(b1b2b3b4).f(a_1a_2a_3a_4) =f(b_1b_2b_3b_4). Then a4a3a2a1=b4b3b2b1,a_4a_3a_2a_1=b_4b_3b_2b_1, and hence a4=b4,a3=b3,a2=b2,a1=b1.a_4=b_4, a_3=b_3,a_2=b_2,a_1=b_1. It follows that a1a2a3a4=b1b2b3b4,a_1a_2a_3a_4=b_1b_2b_3b_4, and consequently, ff is injective. For any b1b2b3b4Sb_1b_2b_3b_4\in S we have that f(b4b3b2b1)=b1b2b3b4,f(b_4b_3b_2b_1)=b_1b_2b_3b_4, and hence ff is surjective.


(b)  Let us show that f1=f,f^{-1}=f,  that is f1(a1a2a3a4)=a4a3a2a1.f^{-1}(a_1a_2a_3a_4)=a_4a_3a_2a_1. Indeed,

ff1(a1a2a3a4)=f(a4a3a2a1)=a1a2a3a4f\circ f^{-1}(a_1a_2a_3a_4)=f(a_4a_3a_2a_1)=a_1a_2a_3a_4 and

f1f(a1a2a3a4)=f1(a4a3a2a1)=a1a2a3a4.f^{-1}\circ f(a_1a_2a_3a_4)=f^{-1}(a_4a_3a_2a_1)=a_1a_2a_3a_4.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS