Write down the negation of the following statements and determine the truth value of the negation:
a) βπ₯ β πΉ, π₯ 2 + 1 β₯ 2π₯
b) βπ₯ β πΉ, (π¦ β β (π¦ + 1)/π¦ < 1
c) βπ§ β π, (π§ ππ πππ) β¨ (π§ ππ ππ£ππ)
d) βπ β π΅, (π ππ ππ£ππ) β§ (βπ ππ πππππ)
a)"\\exist x \\isin R, x^2 +1<2x". False, because least value of "x^2 -2x +1=(x-1)^2" is 0 in case x=1.
b)"\\exist y \\isin R, y \u2260 0 \u2227 (y+1)\/y \u2265 1". True, because for example with any "y>0" , "1+1\/y \u22651".
c)"\\forall z \\isin Z," "(z \\space is \\space not \\space odd) \u2227 (z \\space is \\space not \\space even)". False, because if we choose any odd or even integer, and statement become false.
d)"\\forall n \\isin N, (n \\space is \\space not \\space even) \u2228 (\u221an \\space is \\space not \\space prime)". False, because for example n=4, in this case n is even and βn=β4=2 is prime.
Comments
Leave a comment