Question #266489

Write down the negation of the following statements and determine the truth value of the negation:

a) ∀𝑥 ∈ 𝑹, 𝑥 2 + 1 ≥ 2𝑥

b) ∀𝑥 ∈ 𝑹, (𝑦 ≠→ (𝑦 + 1)/𝑦 < 1

c) ∃𝑧 ∈ 𝒁, (𝑧 𝑖𝑠 𝑜𝑑𝑑) ∨ (𝑧 𝑖𝑠 𝑒𝑣𝑒𝑛)

d) ∃𝑛 ∈ 𝑵, (𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛) ∧ (√𝑛 𝑖𝑠 𝑝𝑟𝑖𝑚𝑒)


1
Expert's answer
2021-11-16T11:08:59-0500

a)xR,x2+1<2x\exist x \isin R, x^2 +1<2x. False, because least value of x22x+1=(x1)2x^2 -2x +1=(x-1)^2 is 0 in case x=1.

b)yR,y0(y+1)/y1\exist y \isin R, y ≠ 0 ∧ (y+1)/y ≥ 1. True, because for example with any y>0y>0 , 1+1/y11+1/y ≥1.

c)zZ,\forall z \isin Z, (z is not odd)(z is not even)(z \space is \space not \space odd) ∧ (z \space is \space not \space even). False, because if we choose any odd or even integer, and statement become false.

d)nN,(n is not even)(n is not prime)\forall n \isin N, (n \space is \space not \space even) ∨ (√n \space is \space not \space prime). False, because for example n=4, in this case n is even and √n=√4=2 is prime.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS