Answer to Question #264362 in Discrete Mathematics for Messi

Question #264362

Construct a truth tabal for each of these compound proposition


1
Expert's answer
2021-11-15T18:24:43-0500

Incomplete question:

We can take this example:

Construct a truth table for each of these compound propositions.

a) p ∧ ¬p

b) p ∨ ¬p

c) (p ∨ ¬q) → q

d) (p ∨ q) → (p ∧ q)

e) (p → q) ↔ (¬q → ¬p)

f) (p → q) → (q → p)


Solution:

Given:

a)"\\ p \\wedge \\lnot p"

b)"\\ p \\lor\\lnot p"

Answer:

"\\begin{array}{ |c| c| c|c |}\n \\hline\np &\\lnot p & p \\wedge\\lnot p& p \\lor\\lnot p \\\\ \n \\hline\n0 & 1 & 0&1\\\\ \n \\hline\n 1 & 0 & 0&1 \\\\ \n \\hline \n\\end{array}"

c) "(p \\lor\\lnot q) \\to q"

d) "(p \\lor q) \\to (p \\wedge q)"

e) "(p \\to q) \\leftrightarrow (\\lnot q \\to \\lnot p)"

f) "(p \\to q) \\to (q \\to p)"

Answer:

"\\begin{array}{ |c| c| c|c |c|c|c|c|c|c|c|c|c|c|}\n \\hline\np &q & \\lnot p &\\lnot q & p \\lor\\lnot q&(p \\lor\\lnot q) \\to q & p \\lor q& p \\wedge q & (p \\lor q) \\to (p \\wedge q) &p\\to q&\\lnot q \\to \\lnot p&q\\to p&(p \\to q) \\leftrightarrow (\\lnot q \\to \\lnot p)&(p \\to q) \\to (q \\to p)\\\\ \n \\hline\n0 & 0 & 1&1&1&0&0&0&1&1&1&1&1&1\\\\ \n \\hline\n 0 & 1 & 1&0&0&1&1&0&0&1&1&0&1&0 \\\\ \n \\hline\n 1 & 0 & 0&1&1&0&1&0&0&0&0&1&1&1\\\\ \n \\hline\n 1 & 1 & 0&0&1&1&1&1&1&1&1&1&1&1 \\\\ \n \\hline\n\n\\end{array}"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS