Obtain the sum β of β products and product - of - sum canonical form for π₯1β¨(π₯2 β π₯3 β² )
Let us obtain the sum-of-products and product-of-sum canonical form for "\ud835\udc65_1\\oplus(\ud835\udc65_2 \\cdot \ud835\udc65_3')." For this let us construct the trush table:
"\\begin{array}{||c|c|c||c|c|c||}\n\\hline\\hline\nx_1 & x_2 & x_3 & x_3' & x_2\\cdot x_3' &\ud835\udc65_1\\oplus(\ud835\udc65_2 \\cdot \ud835\udc65_3')\\\\\n\\hline\\hline\n0 & 0 & 0 & 1 & 0 & 0\\\\\n\\hline\n0 & 0 & 1 & 0 & 0 & 0\\\\\n\\hline\n0 & 1 & 0 & 1 & 1 & 1\\\\\n\\hline\n0 & 1 & 1 & 0 & 0 & 0\\\\\n\\hline\n1 & 0 & 0 & 1 & 0 & 1\\\\\n\\hline\n1 & 0 & 1 & 0 & 0 & 1\\\\\n\\hline\n1 & 1 & 0 & 1 & 1 & 0\\\\\n\\hline\n1 & 1 & 1 & 0 & 0 &1\\\\\n\\hline\\hline\n\\end{array}"
It follows from the trush table that the sum-of-products canonical form is the following:
"x_1'x_2x_3'+x_1x_2'x_3'+x_1x_2'x_3+x_1x_2x_3;"
and the product-of-sum canonical form is the following:
"(x_1+x_2+x_3)(x_1+x_2+x_3')(x_1+x_2'+x_3')(x_1'+x_2'+x_3)."
Comments
Leave a comment