Let P (x, y) be a predicate. What is the negation of ∃x ∀y(P (x, y) ⇐⇒ P (y, x))?
∀x∃y(¬(P(x,y) ⟹ P(y,x)∧P(y,x) ⟹ P(x,y)))\forall x \exists y(\neg (P (x, y)\implies P (y, x)\land P (y,x)\implies P (x,y)))∀x∃y(¬(P(x,y)⟹P(y,x)∧P(y,x)⟹P(x,y)))
∀x\forall x∀x is negation of ∃x\exist x∃x
∃y\exists y∃y is negation of ∀y\forall y∀y
¬(P(x,y) ⟹ P(y,x)∧P(y,x) ⟹ P(x,y))\neg (P (x, y)\implies P (y, x)\land P (y,x)\implies P (x,y))¬(P(x,y)⟹P(y,x)∧P(y,x)⟹P(x,y)) is negation of (P(x,y)⇐⇒P(y,x))(P (x, y) ⇐⇒ P (y, x))(P(x,y)⇐⇒P(y,x))
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment