f(n)=4n2+5n2∗log(n) , g(n)=n3
Now to show f(n)=O(g(n)) when number of operation increases i.e., n→∞ then
g(n)f(n)=n34n3+5n2.log n=4+n5.log n
Now, limn→∞ g(n)f(n)=4+limn→∞n5.log n
=4+5limn→∞11/n [Using L'Hospital Rule]
=4+5×0=4
So, ∣g(n)f(n)∣→4 as n→∞
So, f(n)=O(g(n))
Comments