a particular algorithm increases in time as the number of operations n increases.
Suppose the time complexity of this algorithm is given by:
f(n)=4n2+5n2*log(n)
Show that f(n) is O(g(n)) for g(n) = n3
"f(n)=4n^2+5n^2*log(n)" , "g(n) = n^3"
Now to show "f(n)=O(g(n))" when number of operation increases i.e., "n\\rightarrow \\infty" then
"\\frac{f(n)}{g(n)}=\\frac{4n^3+5n^2.log\\ n}{n^3}=4+\\frac{5.log\\ n}{n}"
Now, "\\lim_{n\\to\\infty}" "\\frac{f(n)}{g(n)}=4+\\lim_{n\\to\\infty}\\frac{5.log\\ n}{n}"
"=4+5\\lim_{n\\to\\infty} \\frac{1\/n}{1}" [Using L'Hospital Rule]
"=4+5\\times0=4"
So, "|\\frac{f(n)}{g(n)}|\\rightarrow 4" as "n\\rightarrow\\infty"
So, "f(n)=O(g(n))"
Comments
Leave a comment