Question #244600

(a) Find the solution to an = an-1 + 2n + 3 with the initial conditions a0= 4.


(b) Consider the recurrence an = an-1 + 2an-2 + 2n - 9 show that this recurrence is solved by:

i. an = 2 - n

ii. an = 2 - n + b * 2n for any real b.



1
Expert's answer
2021-09-30T23:50:43-0400

(a) Characteristic equation:

k=1k = 1

Then the general solution of the homogeneous equation:

(an)0=C11n=C1{\left( {{a_n}} \right)_0} = {C_1} \cdot {1^n} = {C_1}

We will seek a particular solution in the form

An=(An+B)n=An2+BnAn1=A(n1)2+B(n1){A_n} = (An + B)n = A{n^2} + Bn \Rightarrow {A_{n - 1}} = A{(n - 1)^2} + B(n - 1)

Then

An2+Bn=A(n1)2+B(n1)+2n+3A{n^2} + Bn = A{(n - 1)^2} + B(n - 1) + 2n + 3

An2+Bn=An22An+A+BnB+2n+3A{n^2} + Bn = A{n^2} - 2An + A + Bn - B + 2n + 3

2AnA+B=2n+3A=1,B=42An - A + B = 2n + 3 \Rightarrow A = 1,\,B = 4

Then

An=n2+4n{A_n} = {n^2} + 4n

an=(an)0+n2+4n=C1+n2+4n{a_n} = {\left( {{a_n}} \right)_0} + {n^2} + 4n = {C_1} + {n^2} + 4n

a0=4C1+02+40=4C1=4{a_0} = 4 \Rightarrow {C_1} + {0^2} + 4 \cdot 0 = 4 \Rightarrow {C_1} = 4

Then

an=4+n2+4n{a_n} = 4 + {n^2} + 4n

Answer: an=4+n2+4n{a_n} = 4 + {n^2} + 4n

(b) an=an1+2an2+2n9anan12an2=2n9{a_n} = {a_{n - 1}} + 2{a_{n - 2}} + 2n - 9 \Rightarrow {a_n} - {a_{n - 1}} - 2{a_{n - 2}} = 2n - 9

i. If an=2n{a_n} = 2 - n then

anan12an2=2n(2(n1))2(2(n2))=2n(3n)2(4n)=2n3+n8+2n=9+2n=2n9{a_n} - {a_{n - 1}} - 2{a_{n - 2}} = 2 - n - (2 - (n - 1)) - 2(2 - (n - 2)) = 2 - n - (3 - n) - 2(4 - n) = 2 - n - 3 + n - 8 + 2n = - 9 + 2n=2n-9

Then an=2n{a_n} = 2 - n is the solution of this recurrence

ii. If an=2n+b2n{a_n} = 2 - n + b \cdot {2^n} then

anan12an2=2n+b2n(2(n1)+b2n1)2(2(n2)+b2n2)=2n(3n)2(4n)+4b2n22b2n22b2n2=2n3+n8+2n=2n9{a_n} - {a_{n - 1}} - 2{a_{n - 2}} = 2 - n + b \cdot {2^n} - (2 - (n - 1) + b \cdot {2^{n - 1}}) - 2(2 - (n - 2) + b \cdot {2^{n - 2}}) = 2 - n - (3 - n) - 2(4 - n) + 4b \cdot {2^{n - 2}} - 2b \cdot {2^{n - 2}} - 2b \cdot {2^{n - 2}} = 2 - n - 3 + n - 8 + 2n = 2n - 9

Then an=2n+b2n{a_n} = 2 - n + b \cdot {2^n} is the solution of this recurrence


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS