(a) Characteristic equation:
k=1 
Then the general solution of the homogeneous equation:
(an)0=C1⋅1n=C1 
 We will seek a particular solution in the form
An=(An+B)n=An2+Bn⇒An−1=A(n−1)2+B(n−1) 
Then
An2+Bn=A(n−1)2+B(n−1)+2n+3 
An2+Bn=An2−2An+A+Bn−B+2n+3 
2An−A+B=2n+3⇒A=1,B=4 
Then
An=n2+4n 
an=(an)0+n2+4n=C1+n2+4n 
a0=4⇒C1+02+4⋅0=4⇒C1=4 
Then
an=4+n2+4n 
Answer: an=4+n2+4n 
(b) an=an−1+2an−2+2n−9⇒an−an−1−2an−2=2n−9 
i. If an=2−n  then
an−an−1−2an−2=2−n−(2−(n−1))−2(2−(n−2))=2−n−(3−n)−2(4−n)=2−n−3+n−8+2n=−9+2n=2n−9 
Then an=2−n  is the solution of this recurrence
ii. If an=2−n+b⋅2n  then
an−an−1−2an−2=2−n+b⋅2n−(2−(n−1)+b⋅2n−1)−2(2−(n−2)+b⋅2n−2)=2−n−(3−n)−2(4−n)+4b⋅2n−2−2b⋅2n−2−2b⋅2n−2=2−n−3+n−8+2n=2n−9 
Then an=2−n+b⋅2n  is the solution of this recurrence
Comments