Prove the following equivalences by the logical derivation:
(b) (p ∧ q) → r ≡ (p → r) ∨ (q → r)
1) ((p∧q)→r) ⟺ (¬(p∧q)∨r) ⟺ ((p\land q)\to r) \iff (\lnot (p\land q) \lor r) \iff((p∧q)→r)⟺(¬(p∧q)∨r)⟺
⟺ (¬p∨¬q∨r)\iff (\lnot p \lor \lnot q \lor r)⟺(¬p∨¬q∨r)
2) ((p→r)∨(q→r)) ⟺ ((¬p∨r)∨(¬q∨r))((p\to r) \lor (q\to r)) \iff ((\lnot p \lor r) \lor (\lnot q \lor r))((p→r)∨(q→r))⟺((¬p∨r)∨(¬q∨r))
((¬p∨r)∨(¬q∨r)) ⟺ (¬p∨¬q∨r)((\lnot p \lor r) \lor (\lnot q \lor r)) \iff (\lnot p \lor \lnot q \lor r)((¬p∨r)∨(¬q∨r))⟺(¬p∨¬q∨r)
we obtained two equal terms, which means, that statement is true
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments