Show that p ⋁ (q ⋀ r) and (p ⋁ r) ∧ (p ⋁ r) are logically equivalent. This
is the distributive law of disjunction over conjunction.
Distributive law of disjunction over conjunction has the form
"p\\lor(q\\land r)=(p\\lor q)\\land(p\\lor r)"
Let we prove this identity
We must conider all cases for p,q,r"\\in \\lBrace 0,1\\rBrace"
1) Let p=1
Left part of the equation has the form
"1\\lor(p\\land r)=1" because "1\\lor X=1" for any X. be the properties of 1.
Right part equals to"(1\u2228 q)\\land (1\\lor r)=1\\land 1=1"
Thus if p=1 both parts of equation eqaul to 1 therefore the identity is true
for all possible values q,r"\\in \\lBrace 0,1 \\rBrace" .
Now let be p=0.
In this case left part of identity equals to "0\\lor(q\\land r)=q\\land r"
because "0\\lor X=X" by the properties of 0.
Right part equals to "(0\\lor q)\\land(0\\lor r)" ="q\\land r"
and "q\\land r \\equiv q\\land r"
Thus in all possible cases p=0 and p=1 left and right parts are equal identically, so identity is proved.
Given equality p ⋁ (q ⋀ r) and (p ⋁ r) ∧ (p ⋁ r) contans mistake because if p=0,r=1 right part of it equals "(0\\lor 1)\\land (0\\lor 1)=1\\land 1=1"
"(0\\lor 1)\\land (0\\lor 1)=1\\land 1=1" but left part eqals to
"0\\lor(q\\land 1)=0\\lor q=q"
and we must have q=1 but this is not necessary and may be q=0 and so given identity is erroneous.
Comments
Leave a comment