Question #238877

Show that p ⋁ (q ⋀ r) and (p ⋁ r) ∧ (p ⋁ r) are logically equivalent. This

is the distributive law of disjunction over conjunction.


1
Expert's answer
2021-09-21T08:50:01-0400

Distributive law of disjunction over conjunction has the form

p(qr)=(pq)(pr)p\lor(q\land r)=(p\lor q)\land(p\lor r)

Let we prove this identity

We must conider all cases for p,q,r0,1\in \lBrace 0,1\rBrace

1) Let p=1

Left part of the equation has the form

1(pr)=11\lor(p\land r)=1 because 1X=11\lor X=1 for any X. be the properties of 1.

Right part equals to(1q)(1r)=11=1(1∨ q)\land (1\lor r)=1\land 1=1

Thus if p=1 both parts of equation eqaul to 1 therefore the identity is true

for all possible values q,r0,1\in \lBrace 0,1 \rBrace .

Now let be p=0.

In this case left part of identity equals to 0(qr)=qr0\lor(q\land r)=q\land r

because 0X=X0\lor X=X by the properties of 0.

Right part equals to (0q)(0r)(0\lor q)\land(0\lor r) =qrq\land r

and qrqrq\land r \equiv q\land r

Thus in all possible cases p=0 and p=1 left and right parts are equal identically, so identity is proved.

Given equality p ⋁ (q ⋀ r) and (p ⋁ r) ∧ (p ⋁ r) contans mistake because if p=0,r=1 right part of it equals (01)(01)=11=1(0\lor 1)\land (0\lor 1)=1\land 1=1

(01)(01)=11=1(0\lor 1)\land (0\lor 1)=1\land 1=1 but left part eqals to

0(q1)=0q=q0\lor(q\land 1)=0\lor q=q

and we must have q=1 but this is not necessary and may be q=0 and so given identity is erroneous.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS