Question #238759

For the following, find if there are any errors in the methods of proof given below. List out these errors and write how you would prove/disprove the statements given below. (a) Statement: If n is an integer and n^2 is divisible by 4, then n is divisible by 4. Proof: Consider the number 144, which is a perfect square divisible by 4 ( since 4 × 36 = 144). Now, considering that √ 144 = 12 so n=12. Since 12 is also divisible by 4 (4 × 3 = 12), the statement holds true. Hence, Proved! (b) Statement: Let p and q be integers and r = pq + p + q, then r is even if and only if p and q are both even. Proof: Since p and q are even we can write them as p = 2k1 and q = 2k2. This means - r = 2k1 · 2k2 + 2k1 + 2k2, r = 2(2 · k1 · k2 + k1 + k2), r = 2(k3) Meaning r is an even number. Therefore, the statement above is true.


1
Expert's answer
2021-09-21T00:07:40-0400

a)a)

An error has been made.\text{An error has been made.}

A general statement is derived from a particular statement. \text{A general statement is derived from a particular statement. }

if n24 then n4if \ n^2\vdots4\ then\ n\vdots4

Counter-example:\text{Counter-example:}

62=364true;64false6^2=36\vdots4 - true; 6\vdots4-false

Statement If n is an integer and n2 is divisible by 4, then n is divisible by 4 is false\text{Statement If n is an integer and } n^2 \text{ is divisible by 4, then n is divisible by 4 is false}

b)b)

 Statement: Let p and q be integers and r = pq + p + q, then r is even if and only\text{ Statement: Let p and q be integers and r = pq + p + q, then r is even if and only}

if p and q are both even is true.\text{if p and q are both even is true.}

But for completeness of the proof, it is necessary to prove that\text{But for completeness of the proof, it is necessary to prove that}

If one or both of the numbers p, q are odd then r is odd.\text{If one or both of the numbers p, q are odd then r is odd.}

Let one of the numbers p, q be odd then:\text{Let one of the numbers p, q be odd then:}

pqis even numberpq -\text {is even number}

p+q is odd numberp+q \text { is odd number}

pq+p+q is odd numberpq +p+q \text { is odd number}

r is odd numberr \text { is odd number}

Let both numbers p and q be odd then:\text{Let both numbers p and q be odd then:}

pqis odd numberpq -\text {is odd number}

p+q is even numberp+q \text { is even number}

pq+p+q is odd numberpq +p+q \text { is odd number}

r is odd numberr \text { is odd number}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS