Question #236909
Check the extension of d given by d(x,y) = d(x,a) + 1 + d(b,y) where x belongs to X and y belongs to Y/ X
1
Expert's answer
2021-09-21T03:04:13-0400

Given that

d(x,y)=d(x,a)+1+d(b,y)xX,yYXSo,y=x0+y0 s.t x0x,y0y    d(x,y)d(x,a)=1+d(b,y)d(y,a)d(x,y)d(x,a)=1+d(b,y)d(y,a)d(b,y)1d(y,a)d(y,b)1d(a,b)d(y,a)d(y,b)1d(a,b)1 for all a,bd(x,y) = d(x,a) + 1 + d(b,y) \\ x \in X, y \in \frac{Y}{X}\\ So, y = x_0+y_0 \space s.t \space x_0 \in x, y_0 \in y\\ \implies d(x,y) - d(x,a) = 1 + d(b,y) \\ d(y,a) ≤ d(x,y) -d(x,a) = 1 + d(b,y) \\ d(y,a) -d(b,y) ≤1 \\ d(y,a) -d(y,b) ≤1 \\ d(a,b) ≤ d(y,a) -d(y,b)≤1\\ d(a,b)≤1 \space for \space all \space a,b


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS