Employ the Gauss-Seidel method, solve the system. 10𑥠+ 𑦠+ 𑧠= 12 2𑥠+ 2𑦠+ 10𑧠= 14 2𑥠+ 10𑦠+ z=13
Rewrite
"2x+10y+z=13"
"2x+2y+10z=14"
"y_{n+1}=\\dfrac{1}{10}(13-2x_{n+1}-z_n)"
"z_{n+1}=\\dfrac{1}{10}(14-2x_{n+1}-2y_{n+1})"
Initial gauss "(x,y,z)=(0.5,0.5,0.5)"
1st Approximation
"y_{1}=\\dfrac{1}{10}(13-2(1.1)-0.5)=1.03"
"z_{1}=\\dfrac{1}{10}(14-2(1.1)-2(1.03))=0.974"
2nd Approximation
"y_{2}=\\dfrac{1}{10}(13-2(0.9996)-0.974)=1.00268"
"z_{2}=\\dfrac{1}{10}(14-2(0.9996)-2(1.00268))=0.999544"
3rd Approximation
"y_{3}=\\dfrac{1}{10}(13-2(0.9997776)-0.999544)=1.00009008"
"z_{3}=\\dfrac{1}{10}(14-2(0.9997776)-2(1.00009008))=1.000026464"
Solution
"x=1.000, y=1.000, z=1.000"
Comments
Leave a comment