Answer to Question #230545 in Discrete Mathematics for Mak Kin Yun Riva

Question #230545

(a) Let A = {0,1, 2, 3, 4, 5}, B = {1, 2, 3, 4, 5, 6}, and consider the relation

R = {(a, b) э A x B | a2+b2 < 30}.

(i) List all the elements of the relation R and give its cardinality |R|. (3 marks)

(ii) Find the domain and range of the relation R. (2 marks)

(iii) Find the inverse relation R-1 (2 marks)


1
Expert's answer
2021-08-31T15:27:02-0400

(i)Since 02+12=1<30{0^2} + {1^2} = 1 < 30 then (0;1)R(0;1) \in R .

Since 12+12=2<30{1^2} + {1^2} = 2 < 30 then (1;1)R(1;1) \in R .

Arguing in a similar way, we get:

R={(0;1),(1;1),(2;1),(3;1),(4;1),(5;1),(0;2),(1;2),(2;2),(3;2),(4;2),(5;2),(0;3),(1;3),(2;3),(3;3),(4;3),(0;4),(1;4),(2;4),(3;4),(0;5),(1;5),(2;5)}\begin{array}{l} R = \{ \left( {0;1} \right),\,\left( {1;1} \right),\,\left( {2;1} \right),\,\left( {3;1} \right),\,\left( {4;1} \right),\,\left( {5;1} \right),\,\left( {0;2} \right),\,\left( {1;2} \right),\,\\ \left( {2;2} \right),\,\left( {3;2} \right),\,\left( {4;2} \right),\,\left( {5;2} \right),\,\left( {0;3} \right),\,\left( {1;3} \right),\,\left( {2;3} \right),\,\left( {3;3} \right),\,\left( {4;3} \right),\,\\ \left( {0;4} \right),\,\left( {1;4} \right),\,\left( {2;4} \right),\,\left( {3;4} \right),\,\left( {0;5} \right),\,\left( {1;5} \right),\,\left( {2;5} \right)\} \end{array}

The cardinality of a finite set is equal to the number of elements of the set, therefore

R=24|R| = 24

(ii) Let's find  the domain of thr relation:

DomR={x(x,y)R}={0;1;2;3;4;5}=ADomR = \{ x|(x,y) \in R\} = \{ 0;1;2;3;4;5\} = A

Let's find  the range of thr relation:

ImR={y(x,y)R}={1;2;3;4;5}ImR = \{ y|(x,y) \in R\} = \{ 1;2;3;4;5\}

(iii) Let's find   the inverse relation:

R1={(y,x)(x,y)R}={(1;0),(1;1),(1;2),(1;3),(1;4),(1;5),(2;0),(2;1),(2;2),(2;3),(2;4),(2;5),(3;0),(3;1),(3;2),(3;3),(3;4),(4;0),(4;1),(4;2),(5;0),(5;1),(5;2)}\begin{array}{l} {R^{ - 1}} = \{ (y,x)|(x,y) \in R\} = \{ \left( {1;0} \right),\,\left( {1;1} \right),\,\left( {1;2} \right),\,\left( {1;3} \right),\,\left( {1;4} \right),\,\\ \left( {1;5} \right),\,\left( {2;0} \right),\,\left( {2;1} \right),\,\left( {2;2} \right),\,\left( {2;3} \right),\,\left( {2;4} \right),\,\left( {2;5} \right),\,\left( {3;0} \right),\,\left( {3;1} \right),\,\\ \left( {3;2} \right),\,\left( {3;3} \right),\,\left( {3;4} \right),\,\left( {4;0} \right),\,\left( {4;1} \right),\,\left( {4;2} \right),\,\left( {5;0} \right),\,\left( {5;1} \right),\,\left( {5;2} \right)\} \end{array}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment