(a) Let A = {0,1, 2, 3, 4, 5}, B = {1, 2, 3, 4, 5, 6}, and consider the relation
R = {(a, b) э A x B | a2+b2 < 30}.
(i) List all the elements of the relation R and give its cardinality |R|. (3 marks)
(ii) Find the domain and range of the relation R. (2 marks)
(iii) Find the inverse relation R-1 (2 marks)
(i)Since "{0^2} + {1^2} = 1 < 30" then "(0;1) \\in R" .
Since "{1^2} + {1^2} = 2 < 30" then "(1;1) \\in R" .
Arguing in a similar way, we get:
"\\begin{array}{l}\nR = \\{ \\left( {0;1} \\right),\\,\\left( {1;1} \\right),\\,\\left( {2;1} \\right),\\,\\left( {3;1} \\right),\\,\\left( {4;1} \\right),\\,\\left( {5;1} \\right),\\,\\left( {0;2} \\right),\\,\\left( {1;2} \\right),\\,\\\\\n\\left( {2;2} \\right),\\,\\left( {3;2} \\right),\\,\\left( {4;2} \\right),\\,\\left( {5;2} \\right),\\,\\left( {0;3} \\right),\\,\\left( {1;3} \\right),\\,\\left( {2;3} \\right),\\,\\left( {3;3} \\right),\\,\\left( {4;3} \\right),\\,\\\\\n\\left( {0;4} \\right),\\,\\left( {1;4} \\right),\\,\\left( {2;4} \\right),\\,\\left( {3;4} \\right),\\,\\left( {0;5} \\right),\\,\\left( {1;5} \\right),\\,\\left( {2;5} \\right)\\} \n\\end{array}"
The cardinality of a finite set is equal to the number of elements of the set, therefore
"|R| = 24"
(ii) Let's find the domain of thr relation:
"DomR = \\{ x|(x,y) \\in R\\} = \\{ 0;1;2;3;4;5\\} = A"
Let's find the range of thr relation:
"ImR = \\{ y|(x,y) \\in R\\} = \\{ 1;2;3;4;5\\}"
(iii) Let's find the inverse relation:
"\\begin{array}{l}\n{R^{ - 1}} = \\{ (y,x)|(x,y) \\in R\\} = \\{ \\left( {1;0} \\right),\\,\\left( {1;1} \\right),\\,\\left( {1;2} \\right),\\,\\left( {1;3} \\right),\\,\\left( {1;4} \\right),\\,\\\\\n\\left( {1;5} \\right),\\,\\left( {2;0} \\right),\\,\\left( {2;1} \\right),\\,\\left( {2;2} \\right),\\,\\left( {2;3} \\right),\\,\\left( {2;4} \\right),\\,\\left( {2;5} \\right),\\,\\left( {3;0} \\right),\\,\\left( {3;1} \\right),\\,\\\\\n\\left( {3;2} \\right),\\,\\left( {3;3} \\right),\\,\\left( {3;4} \\right),\\,\\left( {4;0} \\right),\\,\\left( {4;1} \\right),\\,\\left( {4;2} \\right),\\,\\left( {5;0} \\right),\\,\\left( {5;1} \\right),\\,\\left( {5;2} \\right)\\} \n\\end{array}"
Comments
Leave a comment