Answer to Question #225729 in Discrete Mathematics for Prince

Question #225729
1) Draw the Hasse diagram for inclusion on the set P(S), where S = {a, b, c, d}

2) Let S = {1,2,3,4} with lexicographic order "<=" relation
a. Find all pairs in S x S less than (2, 3)
b. Find all pairs in S x S greater than (3, 1)
c. Draw the Hasse diagram of the poset (S x S, <)
1
Expert's answer
2021-09-01T16:01:50-0400

Part 1 and 2



Part a

(2, 2), (2, 1),(1, 4), (1, 3), (1, 2), (1, 1)

Part b

(3, 2), (3, 3),(3, 4), (4, 1), (4, 2), (4, 3), (4, 4)

Part c

"P(A) = \\big \\{ \\varnothing, \\{a\\}, \\{b\\}, \\{c\\}, \\{a, b\\}, \\{b, c\\}, \\{a,c\\}, \\{a, b,c\\} \\big \\}."

Let's show "S=(P(A), \\subseteq)" is a poset. Let's show that "S" satisfies the following three properties.

  1. Reflexivity. For every "x \\in P(A) \\ x \\subseteq x" is trivially true.
  2. Antisymmetry. Let "x, y \\in P(A)" and "x \\subseteq y \\wedge y \\subseteq z".Then "x=y" from the definition.
  3. Transitivity. Let "x, y,z \\in P(A)" and "x \\subseteq y \\wedge y \\subseteq x". Then for all"a \\in x" we have "a \\in y", and therefore "a \\in z". Thus "x \\subseteq z".

The Hasse diagram for "(P(A), \\subseteq)" is shown below.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS