Question #219496

Solve the Recurrence relation an-3an-1-4an-2=4.3n where a0=1,a1=2


1
Expert's answer
2021-07-22T06:05:27-0400
an3an14an2=43na_n-3a_{n-1}-4a_{n-2}=4\cdot3^n


The associated linear homogeneous equation is 


an3an14an2=0a_n-3a_{n-1}-4a_{n-2}=0

The characteristic equation is


r23r4=0r^2-3r-4=0

(r+1)(r4)=0(r+1)(r-4)=0

r1=1,r2=4r_1=-1, r_2=4

The solution is


an(h)=α1(1)n+α2(4)na_n^{(h)}=\alpha_1(-1)^n+\alpha_2(4)^n



Because F(n)=43n,F(n)=4\cdot3^n, a reasonable trial solution is


an(p)=C3n,a_n^{(p)}=C\cdot3^n,

where CC is a constant.

Substitute


C3n3C3n14C3n2=43nC\cdot3^n-3C\cdot3^{n-1}-4C\cdot3^{n-2}=4\cdot3^n

9C9C4C=369C-9C-4C=36

C=9C=-9

Hence the particulr solution is


an(p)=93na_n^{(p)}=-9\cdot3^n

All solutions are of the form


an=α1(1)n+α2(4)n93na_n=\alpha_1(-1)^n+\alpha_2(4)^n-9\cdot3^n

where α1\alpha_1 and α2\alpha_2 are a constants.


a0=1,a1=2a_0=1, a_1=2


a0=α1(1)0+α2(4)0930=1a_0=\alpha_1(-1)^0+\alpha_2(4)^0-9\cdot3^0=1

a1=α1(1)1+α2(4)1931=2a_1=\alpha_1(-1)^1+\alpha_2(4)^1-9\cdot3^1=2


α1+α2=10\alpha_1+\alpha_2=10

α1+4α2=29-\alpha_1+4\alpha_2=29



α1=2.2\alpha_1=2.2

α2=7.8\alpha_2=7.8

an=2.2(1)n+7.8(4)n93na_n=2.2(-1)^n+7.8(4)^n-9\cdot3^n


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS