an−3an−1−4an−2=4⋅3n
The associated linear homogeneous equation is
an−3an−1−4an−2=0 The characteristic equation is
r2−3r−4=0
(r+1)(r−4)=0
r1=−1,r2=4 The solution is
an(h)=α1(−1)n+α2(4)n
Because F(n)=4⋅3n, a reasonable trial solution is
an(p)=C⋅3n,where C is a constant.
Substitute
C⋅3n−3C⋅3n−1−4C⋅3n−2=4⋅3n
9C−9C−4C=36
C=−9 Hence the particulr solution is
an(p)=−9⋅3n All solutions are of the form
an=α1(−1)n+α2(4)n−9⋅3n where α1 and α2 are a constants.
a0=1,a1=2
a0=α1(−1)0+α2(4)0−9⋅30=1
a1=α1(−1)1+α2(4)1−9⋅31=2
α1+α2=10
−α1+4α2=29
α1=2.2
α2=7.8
an=2.2(−1)n+7.8(4)n−9⋅3n
Comments