Question #214877
Q2. Show that that the following are Logically equivalent or not.
1. ∼ (p ∧ q) and ∼ p∨ ∼ q (de Morgan’s Laws)
2. ∼ (p ∧ q) and ∼ p∨ ∼ q
3. (∼ p ∨ q) ∧ (∼ q) ≡∼ (p ∨ q).
4. (p∧ ∼ q) ∨ (∼ p ∨ q) ≡ t.
1
Expert's answer
2021-07-08T13:12:21-0400

1. ¬(pq)=0pq=1p=q=1\neg(p \wedge q) = 0 \Leftrightarrow p \wedge q =1 \Leftrightarrow p=q=1

(¬p¬q)=0¬p=¬q=0p=q=1(\neg p\vee\neg q)=0 \Leftrightarrow \neg p=\neg q=0 \Leftrightarrow p=q=1

Therefore, the formulas ¬(pq)\neg(p \wedge q) and ¬p¬q\neg p\vee\neg q are logically equivalent.


2. ¬(pq)=1pq=0p=q=0\neg(p \vee q) = 1 \Leftrightarrow p \vee q =0 \Leftrightarrow p=q=0

(¬p¬q)=1¬p=¬q=1p=q=0(\neg p\wedge\neg q)=1 \Leftrightarrow \neg p=\neg q=1 \Leftrightarrow p=q=0

Therefore, the formulas ¬(pq)\neg(p \vee q) and ¬p¬q\neg p\wedge\neg q are logically equivalent.


3. (¬pq)¬q=1¬pq=1,¬q=1¬p=1,q=0p=q=0(\neg p \vee q) \wedge \neg q =1 \Leftrightarrow \neg p \vee q=1, \neg q=1 \Leftrightarrow \neg p=1, q=0 \Leftrightarrow p=q=0

¬(pq)=1pq=0p=q=0\neg (p \vee q)=1 \Leftrightarrow p \vee q=0 \Leftrightarrow p=q=0

Therefore, the formulas (¬pq)¬q(\neg p \vee q) \wedge \neg q and ¬(pq)\neg (p \vee q) are logically equivalent.


4. (p¬q)(¬pq)=0p¬q=0,¬pq=0(p\wedge \neg q) \vee (\neg p \vee q) =0 \Leftrightarrow p\wedge \neg q=0, \neg p \vee q=0 p¬q=0,¬p=q=0\Leftrightarrow p\wedge \neg q=0, \neg p = q = 0 p¬q=0,p=1,q=0\Leftrightarrow p\wedge \neg q=0, p = 1, q = 0 p¬q=0,p¬q=1\Leftrightarrow p\wedge \neg q=0, p\wedge \neg q=1 \Leftrightarrow never

Therefore, (p¬q)(¬pq)1(p\wedge \neg q) \vee (\neg p \vee q) \equiv 1 (i.e. it is a tautology)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS