Answer to Question #214877 in Discrete Mathematics for Taj

Question #214877
Q2. Show that that the following are Logically equivalent or not.
1. ∼ (p ∧ q) and ∼ p∨ ∼ q (de Morgan’s Laws)
2. ∼ (p ∧ q) and ∼ p∨ ∼ q
3. (∼ p ∨ q) ∧ (∼ q) ≡∼ (p ∨ q).
4. (p∧ ∼ q) ∨ (∼ p ∨ q) ≡ t.
1
Expert's answer
2021-07-08T13:12:21-0400

1. "\\neg(p \\wedge q) = 0 \\Leftrightarrow p \\wedge q =1 \\Leftrightarrow p=q=1"

"(\\neg p\\vee\\neg q)=0 \\Leftrightarrow \\neg p=\\neg q=0 \\Leftrightarrow p=q=1"

Therefore, the formulas "\\neg(p \\wedge q)" and "\\neg p\\vee\\neg q" are logically equivalent.


2. "\\neg(p \\vee q) = 1 \\Leftrightarrow p \\vee q =0 \\Leftrightarrow p=q=0"

"(\\neg p\\wedge\\neg q)=1 \\Leftrightarrow \\neg p=\\neg q=1 \\Leftrightarrow p=q=0"

Therefore, the formulas "\\neg(p \\vee q)" and "\\neg p\\wedge\\neg q" are logically equivalent.


3. "(\\neg p \\vee q) \\wedge \\neg q =1 \\Leftrightarrow \\neg p \\vee q=1, \\neg q=1 \\Leftrightarrow \\neg p=1, q=0 \\Leftrightarrow p=q=0"

"\\neg (p \\vee q)=1 \\Leftrightarrow p \\vee q=0 \\Leftrightarrow p=q=0"

Therefore, the formulas "(\\neg p \\vee q) \\wedge \\neg q" and "\\neg (p \\vee q)" are logically equivalent.


4. "(p\\wedge \\neg q) \\vee (\\neg p \\vee q) =0 \\Leftrightarrow p\\wedge \\neg q=0, \\neg p \\vee q=0" "\\Leftrightarrow p\\wedge \\neg q=0, \\neg p = q = 0" "\\Leftrightarrow p\\wedge \\neg q=0, p = 1, q = 0" "\\Leftrightarrow p\\wedge \\neg q=0, p\\wedge \\neg q=1" "\\Leftrightarrow" never

Therefore, "(p\\wedge \\neg q) \\vee (\\neg p \\vee q) \\equiv 1" (i.e. it is a tautology)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS