1. "\\neg(p \\wedge q) = 0 \\Leftrightarrow p \\wedge q =1 \\Leftrightarrow p=q=1"
"(\\neg p\\vee\\neg q)=0 \\Leftrightarrow \\neg p=\\neg q=0 \\Leftrightarrow p=q=1"
Therefore, the formulas "\\neg(p \\wedge q)" and "\\neg p\\vee\\neg q" are logically equivalent.
2. "\\neg(p \\vee q) = 1 \\Leftrightarrow p \\vee q =0 \\Leftrightarrow p=q=0"
"(\\neg p\\wedge\\neg q)=1 \\Leftrightarrow \\neg p=\\neg q=1 \\Leftrightarrow p=q=0"
Therefore, the formulas "\\neg(p \\vee q)" and "\\neg p\\wedge\\neg q" are logically equivalent.
3. "(\\neg p \\vee q) \\wedge \\neg q =1 \\Leftrightarrow \\neg p \\vee q=1, \\neg q=1 \\Leftrightarrow \\neg p=1, q=0 \\Leftrightarrow p=q=0"
"\\neg (p \\vee q)=1 \\Leftrightarrow p \\vee q=0 \\Leftrightarrow p=q=0"
Therefore, the formulas "(\\neg p \\vee q) \\wedge \\neg q" and "\\neg (p \\vee q)" are logically equivalent.
4. "(p\\wedge \\neg q) \\vee (\\neg p \\vee q) =0 \\Leftrightarrow p\\wedge \\neg q=0, \\neg p \\vee q=0" "\\Leftrightarrow p\\wedge \\neg q=0, \\neg p = q = 0" "\\Leftrightarrow p\\wedge \\neg q=0, p = 1, q = 0" "\\Leftrightarrow p\\wedge \\neg q=0, p\\wedge \\neg q=1" "\\Leftrightarrow" never
Therefore, "(p\\wedge \\neg q) \\vee (\\neg p \\vee q) \\equiv 1" (i.e. it is a tautology)
Comments
Leave a comment