1. ¬(p∧q)=0⇔p∧q=1⇔p=q=1
(¬p∨¬q)=0⇔¬p=¬q=0⇔p=q=1
Therefore, the formulas ¬(p∧q) and ¬p∨¬q are logically equivalent.
2. ¬(p∨q)=1⇔p∨q=0⇔p=q=0
(¬p∧¬q)=1⇔¬p=¬q=1⇔p=q=0
Therefore, the formulas ¬(p∨q) and ¬p∧¬q are logically equivalent.
3. (¬p∨q)∧¬q=1⇔¬p∨q=1,¬q=1⇔¬p=1,q=0⇔p=q=0
¬(p∨q)=1⇔p∨q=0⇔p=q=0
Therefore, the formulas (¬p∨q)∧¬q and ¬(p∨q) are logically equivalent.
4. (p∧¬q)∨(¬p∨q)=0⇔p∧¬q=0,¬p∨q=0 ⇔p∧¬q=0,¬p=q=0 ⇔p∧¬q=0,p=1,q=0 ⇔p∧¬q=0,p∧¬q=1 ⇔ never
Therefore, (p∧¬q)∨(¬p∨q)≡1 (i.e. it is a tautology)
Comments