Is (p>q)>[(p>q)>q] a tautology? Why or why not?
Let us show that the formula (p→q)→[(p→q)→q](p\to q)\to[(p\to q)\to q](p→q)→[(p→q)→q] is not a tautology. Taking into account that for (p0,q0)=(0,0)∈{0,1}2(p_0,q_0)=(0,0)\in\{0,1\}^2(p0,q0)=(0,0)∈{0,1}2 we have that ∣(p0→q0)→[(p0→q0)→q0]∣=(0→0)→[(0→0)→0]=1→[1→0]=1→0=0,|(p_0\to q_0)\to[(p_0\to q_0)\to q_0]|=(0\to 0)\to[(0\to 0)\to 0]=1\to [1\to 0]=1\to 0=0,∣(p0→q0)→[(p0→q0)→q0]∣=(0→0)→[(0→0)→0]=1→[1→0]=1→0=0, we conclude that the formula is not a tautology.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments