Question 22
Consider the following statement:
∀x Z, [(2x + 4 > 0) (4 - x
2 ≤ 0)]
The negation of the above statement is:
¬[∀x Z, [(2x + 4 > 0) (4 - x
2 ≤ 0)]]
≡ ∃x Z, ¬[(2x + 4 > 0) (4 - x
2 ≤ 0)]
≡ ∃x Z, [¬(2x + 4 > 0) ∧ ¬(4 - x
2 ≤ 0)]
≡ ∃x Z, [(2x + 4 ≤ 0) ∧ (4 - x
2 > 0)]
1. True
2. False
Question 23
Consider the statement
If n is even, then 4n2
- 3 is odd.
The contrapositive of the given statement is:
If 4n2
- 3 is odd, then n is even.
1. True
2. False
Question 22
Let us consider the statement "\u2200x \\in\\Z, [(2x + 4 > 0) \\lor(4 - x^2 \u2264 0)]"
The negation of the above statement is:
"\\neg[\u2200x \\in\\Z, [(2x + 4 > 0) \\lor(4 - x^2 \u2264 0)]]\u2261\n\\exists x \\in\\Z, \\neg[(2x + 4 > 0) \\lor(4 - x^2 \u2264 0)]\u2261\n\\exists x \\in\\Z, [\\neg(2x + 4 > 0) \\land\\neg(4 - x^2 \u2264 0)]\u2261\n\\exists x \\in\\Z, [(2x + 4 \\le 0) \\land(4 - x^2 >0)]"
Answer: 1. True
Question 23
Let us consider the statement "If "n" is even, then "4n^2- 3" is odd". The contrapositive law is "p\\to q\u2261\\neg q\\to\\neg p." Let "p=" " "n" is even", "q=" " "4n^2- 3" is odd". Then the contrapositive of the given statement is "If "4n^2- 3" is even, then "n" is odd".
Answer: 2. False
Comments
Leave a comment