Answer to Question #211837 in Discrete Mathematics for Jaguar

Question #211837

Question 22

Consider the following statement:

∀x  Z, [(2x + 4 > 0)  (4 - x

2 ≤ 0)]

The negation of the above statement is:

¬[∀x  Z, [(2x + 4 > 0)  (4 - x

2 ≤ 0)]]

≡ ∃x  Z, ¬[(2x + 4 > 0)  (4 - x

2 ≤ 0)]

≡ ∃x  Z, [¬(2x + 4 > 0) ∧ ¬(4 - x

2 ≤ 0)]

≡ ∃x  Z, [(2x + 4 ≤ 0) ∧ (4 - x

2 > 0)]

1. True

2. False

Question 23

Consider the statement

If n is even, then 4n2

- 3 is odd.

The contrapositive of the given statement is:

If 4n2

- 3 is odd, then n is even.

1. True

2. False


1
Expert's answer
2021-07-25T10:53:05-0400

Question 22


Let us consider the statement xZ,[(2x+4>0)(4x20)]∀x \in\Z, [(2x + 4 > 0) \lor(4 - x^2 ≤ 0)]


The negation of the above statement is:

¬[xZ,[(2x+4>0)(4x20)]]xZ,¬[(2x+4>0)(4x20)]xZ,[¬(2x+4>0)¬(4x20)]xZ,[(2x+40)(4x2>0)]\neg[∀x \in\Z, [(2x + 4 > 0) \lor(4 - x^2 ≤ 0)]]≡ \exists x \in\Z, \neg[(2x + 4 > 0) \lor(4 - x^2 ≤ 0)]≡ \exists x \in\Z, [\neg(2x + 4 > 0) \land\neg(4 - x^2 ≤ 0)]≡ \exists x \in\Z, [(2x + 4 \le 0) \land(4 - x^2 >0)]


Answer: 1. True


Question 23


Let us consider the statement "If nn is even, then 4n234n^2- 3 is odd". The contrapositive law is pq¬q¬p.p\to q≡\neg q\to\neg p. Let p=p= " nn is even", q=q= " 4n234n^2- 3 is odd". Then the contrapositive of the given statement is "If 4n234n^2- 3 is even, then nn is odd".


Answer: 2. False


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment