Answer to Question #205018 in Discrete Mathematics for Ahmad

Question #205018

Let R be a relation on the set of all non-negative integers defined by aRb if and only if a3 - b3 is divisible by 6. Then


1
Expert's answer
2021-06-10T07:00:41-0400

"Complete \\space Question \\space is\n\\\\\nLet \\space R \\space be \\space a \\space relation \\space on \\space the \\space set of \\space all \\space non-negative \\space integers \\space defined \\space by \\space aRb \\space if \\space and \\space only \\space if \\space a ^{ 3 }- b ^{3 } \\space is \\space divisible \\space by \\space 6. Then \\space relation \\space is \\space equivalence \\space relation .\\\\\n\nSolution \\\\\nFor \\space check \\space to \\space equivalence \\space relation, we \\space will \\space be \\space check \\\\\n(1)reflexive, (2) symmetric, and (3) transitive \\\\\n(1) reflexive :-\\\\\nIf \\space any \\space element \\space a \\space is \\space related \\space to \\space itself.then \\space it \\space called \\space reflexive.\nHere \\space a ^{3 } -a ^{ 3 } \\space is \\space equal \\space to \\space zero. And \\space zero \\space is \\space divisible \\space by \\space 6 \\\\\nSo \\space say \\space that \\space aRa.\n\\\\\n(2)symmetric:- \\\\\nIf \\space a \\space related \\space to \\space b \\space and \\space b \\space Also \\space related \\space to \\space a, then \\space it \\space called \\space symmetric .\\\\\nHere \\\\ \\space a ^{3 } -b^{ 3 } \\space is \\space divisible \\space by \\space 6 \\iff \\\\\n\\space b ^{3 } -a^{ 3 } \\space is \\space divisible \\space by \\space 6 \\iff \\\\\nbRa \\\\\nso \\space it \\space is \\space reflexive. \\\\\n(3) transitive:- \\\\\nIf \\space aRb \\space and \\space bRc \\implies aRc \\\\\nIt \\space called \\space transitive. \\\\\nHere \\\\\nLet \\\\\n\\space a ^{3 } -b^{ 3 } \\space is \\space divisible \\space by \\space 6 \\space and \\space\\space b^{3 } -c^{ 3 } \\space is \\space divisible \\space by \\space 6 \\\\\n\\iff [( \\space a ^{3 } -b^{ 3 } )+(b^3-c^3)]\\space is \\space divisible \\space by \\space 6 \\\\\n\\iff \\space a ^{3 } -c^{ 3 } \\space is \\space divisible \\space by \\space 6 \\\\\naRc \\\\\nSo \\space it \\space is \\space transitive. \\\\\nFinally \\space we \\space say \\space that \\space relation \\space is \\space equivalence \\space relation."


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS