Question #205018

Let R be a relation on the set of all non-negative integers defined by aRb if and only if a3 - b3 is divisible by 6. Then


1
Expert's answer
2021-06-10T07:00:41-0400

Complete Question isLet R be a relation on the setof all nonnegative integers defined by aRb if and only if a3b3 is divisible by 6.Then relation is equivalence relation.SolutionFor check to equivalence relation,we will be check(1)reflexive,(2)symmetric,and(3)transitive(1)reflexive:If any element a is related to itself.then it called reflexive.Here a3a3 is equal to zero.And zero is divisible by 6So say that aRa.(2)symmetric:If a related to b and b Also related to a,then it called symmetric.Here a3b3 is divisible by 6     b3a3 is divisible by 6    bRaso it is reflexive.(3)transitive:If aRb and bRc    aRcIt called transitive.HereLet a3b3 is divisible by 6 and  b3c3 is divisible by 6    [( a3b3)+(b3c3)] is divisible by 6     a3c3 is divisible by 6aRcSo it is transitive.Finally we say that relation is equivalence relation.Complete \space Question \space is \\ Let \space R \space be \space a \space relation \space on \space the \space set of \space all \space non-negative \space integers \space defined \space by \space aRb \space if \space and \space only \space if \space a ^{ 3 }- b ^{3 } \space is \space divisible \space by \space 6. Then \space relation \space is \space equivalence \space relation .\\ Solution \\ For \space check \space to \space equivalence \space relation, we \space will \space be \space check \\ (1)reflexive, (2) symmetric, and (3) transitive \\ (1) reflexive :-\\ If \space any \space element \space a \space is \space related \space to \space itself.then \space it \space called \space reflexive. Here \space a ^{3 } -a ^{ 3 } \space is \space equal \space to \space zero. And \space zero \space is \space divisible \space by \space 6 \\ So \space say \space that \space aRa. \\ (2)symmetric:- \\ If \space a \space related \space to \space b \space and \space b \space Also \space related \space to \space a, then \space it \space called \space symmetric .\\ Here \\ \space a ^{3 } -b^{ 3 } \space is \space divisible \space by \space 6 \iff \\ \space b ^{3 } -a^{ 3 } \space is \space divisible \space by \space 6 \iff \\ bRa \\ so \space it \space is \space reflexive. \\ (3) transitive:- \\ If \space aRb \space and \space bRc \implies aRc \\ It \space called \space transitive. \\ Here \\ Let \\ \space a ^{3 } -b^{ 3 } \space is \space divisible \space by \space 6 \space and \space\space b^{3 } -c^{ 3 } \space is \space divisible \space by \space 6 \\ \iff [( \space a ^{3 } -b^{ 3 } )+(b^3-c^3)]\space is \space divisible \space by \space 6 \\ \iff \space a ^{3 } -c^{ 3 } \space is \space divisible \space by \space 6 \\ aRc \\ So \space it \space is \space transitive. \\ Finally \space we \space say \space that \space relation \space is \space equivalence \space relation.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS