Question #191362

Determine whether the function f is a bijection from R to R ? Find fog and gof where f(x)=2x2+3 and g(x)=x=1


1
Expert's answer
2021-05-11T07:09:42-0400

Given functions, f(x)=2x2+3,g(x)=x1f(x)=2x^2+3,g(x)=x-1


Let A and B be two sets of real numbers.

Let x1,x2Ax_1,x_2 \in A such that f(x1)=f(x2)f(x_1)=f(x_2)


2x12+3=2x22+3x12=x22x12x22=0(x1x2)(x1+x2)=0x1=±x2.Thusf(x1)=f(x2) does not implies that x1=x\Rightarrow 2x_1^2+3=2x_2^2+3 \\ \Rightarrow x_1^2=x_2^2 \\ \Rightarrow x_1^2-x_2^2=0 \\ \Rightarrow (x_1-x_2)(x_1+x_2)=0 \\ \Rightarrow x_1=\pm x_2. Thus f(x_1)=f(x_2) \text{ does not implies that }x_1=x _2.


For instance, f(1)=f(-1)=2 i.e. Two element have the same image. So F is many one function.


Now , let y=2x2+3x=y32y=2x^2+3\Rightarrow x=\sqrt{\dfrac{y-3}{2}}


    Elements of y have no pre-image in A ( for instance an element -2 in the codomain has no pre image in domain A. SO f is not onto.


So F is not bijective.


fog(x)=f(x1)=2(x1)2+3=2x2+24x+3=2x24x+5fog(x)=f(x-1)=2(x-1)^2+3=2x^2+2-4x+3=2x^2-4x+5


gof(x)=g(2x2+3)=2x2+31=22+2gof(x)=g(2x^2+3)=2x^2+3-1=2^2+2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS