Given functions, f ( x ) = 2 x 2 + 3 , g ( x ) = x − 1 f(x)=2x^2+3,g(x)=x-1 f ( x ) = 2 x 2 + 3 , g ( x ) = x − 1
Let A and B be two sets of real numbers.
Let x 1 , x 2 ∈ A x_1,x_2 \in A x 1 , x 2 ∈ A such that f ( x 1 ) = f ( x 2 ) f(x_1)=f(x_2) f ( x 1 ) = f ( x 2 )
⇒ 2 x 1 2 + 3 = 2 x 2 2 + 3 ⇒ x 1 2 = x 2 2 ⇒ x 1 2 − x 2 2 = 0 ⇒ ( x 1 − x 2 ) ( x 1 + x 2 ) = 0 ⇒ x 1 = ± x 2 . T h u s f ( x 1 ) = f ( x 2 ) does not implies that x 1 = x \Rightarrow 2x_1^2+3=2x_2^2+3
\\
\Rightarrow x_1^2=x_2^2
\\
\Rightarrow x_1^2-x_2^2=0
\\
\Rightarrow (x_1-x_2)(x_1+x_2)=0
\\
\Rightarrow x_1=\pm x_2. Thus f(x_1)=f(x_2) \text{ does not implies that }x_1=x ⇒ 2 x 1 2 + 3 = 2 x 2 2 + 3 ⇒ x 1 2 = x 2 2 ⇒ x 1 2 − x 2 2 = 0 ⇒ ( x 1 − x 2 ) ( x 1 + x 2 ) = 0 ⇒ x 1 = ± x 2 . T h u s f ( x 1 ) = f ( x 2 ) does not implies that x 1 = x _2.
For instance, f(1)=f(-1)=2 i.e. Two element have the same image. So F is many one function.
Now , let y = 2 x 2 + 3 ⇒ x = y − 3 2 y=2x^2+3\Rightarrow x=\sqrt{\dfrac{y-3}{2}} y = 2 x 2 + 3 ⇒ x = 2 y − 3
Elements of y have no pre-image in A ( for instance an element -2 in the codomain has no pre image in domain A. SO f is not onto.
So F is not bijective.
f o g ( x ) = f ( x − 1 ) = 2 ( x − 1 ) 2 + 3 = 2 x 2 + 2 − 4 x + 3 = 2 x 2 − 4 x + 5 fog(x)=f(x-1)=2(x-1)^2+3=2x^2+2-4x+3=2x^2-4x+5 f o g ( x ) = f ( x − 1 ) = 2 ( x − 1 ) 2 + 3 = 2 x 2 + 2 − 4 x + 3 = 2 x 2 − 4 x + 5
g o f ( x ) = g ( 2 x 2 + 3 ) = 2 x 2 + 3 − 1 = 2 2 + 2 gof(x)=g(2x^2+3)=2x^2+3-1=2^2+2 g o f ( x ) = g ( 2 x 2 + 3 ) = 2 x 2 + 3 − 1 = 2 2 + 2
Comments