Solution:
Consider relation R defined on integers (Z).
Reflexive:
aRa⇒a≤a+1⇒True
Thus, reflexive.
Symmetric:
aRb⇒a≤b+1bRa⇒b≤a+1⇒False
Thus, not symmetric.
Transitive:
aRb⇒a≤b+1bRc⇒b≤c+1
⇒a≤(c+1)+1=c+2 or a≤c+1⇒aRc
Thus, transitive.
Hence, given relation R is reflexive and transitive only for all a,b,c∈Z .
Comments