"\\dfrac{dx}{dt}=x-y"
"\\dfrac{dy}{dt}=x+3y"
"\\begin{pmatrix}\n dx\/dt \\\\\n dy\/dt\n\\end{pmatrix}=\\begin{pmatrix}\n 1 & -1 \\\\\n 1 & 3\n\\end{pmatrix}\n\\begin{pmatrix}\n x \\\\\n y\n\\end{pmatrix}" Find the eigenvalues
"\\begin{pmatrix}\n 1-\\lambda & -1 \\\\\n 1 & 3-\\lambda\n\\end{pmatrix}=0"
"(1-\\lambda)(3-\\lambda)+1=0"
"\\lambda^2-4\\lambda+4=0"
"\\lambda_1=\\lambda_2=2" Find the eigenvectors.
"\\lambda=2"
"\\begin{pmatrix}\n 1-2 & -1 \\\\\n 1 & 3-2\n\\end{pmatrix}\\begin{pmatrix}\n v_1 \\\\\n v_2\n\\end{pmatrix}=0" The eigen vector is
"v=\\begin{pmatrix}\n -1 \\\\\n 1\n\\end{pmatrix}"For repeated eigenvalues "\\lambda_1=\\lambda_2=2" and the eigenvector "v=\\begin{pmatrix}\n -1 \\\\\n 1\n\\end{pmatrix}"
the general solution takes form
"\\begin{pmatrix}\n x \\\\\n y\n\\end{pmatrix}=c_1e^{2t}\\begin{pmatrix}\n -1 \\\\\n 1\n\\end{pmatrix}+c_2 te^{2t}\\begin{pmatrix}\n -1 \\\\\n 1\n\\end{pmatrix}+c_2e^{2t}\\begin{pmatrix}\n u_1 \\\\\n u_2\n\\end{pmatrix}" where
"\\begin{pmatrix}\n 1-2 & -1 \\\\\n 1 & 3-2\n\\end{pmatrix}\\begin{pmatrix}\n u_1 \\\\\n u_2\n\\end{pmatrix}=\\begin{pmatrix}\n -1 \\\\\n 1\n\\end{pmatrix}"
"\\begin{pmatrix}\n u_1 \\\\\n u_2\n\\end{pmatrix}=\\begin{pmatrix}\n 1 \\\\\n 0\n\\end{pmatrix}"
The solution is
"\\begin{pmatrix}\n x \\\\\n y\n\\end{pmatrix}=c_1e^{2t}\\begin{pmatrix}\n -1 \\\\\n 1\n\\end{pmatrix}+c_2 te^{2t}\\begin{pmatrix}\n -1 \\\\\n 1\n\\end{pmatrix}+c_2e^{2t}\\begin{pmatrix}\n 1 \\\\\n 0\n\\end{pmatrix}"
Comments
Leave a comment