. PROBLEM SOLVING.
A. SET. Let A, B and C are sets and U be universal set.
U = {-1, 0, 1, 2, 3, 4, 5, 6, a, b, c, d, e}
A = {-1, 1, 2, 4}
B = {0, 2, 4, 6}
C = {b, c, d}
Find for the following. Show complete solutions. (3 pts each)
1. 𝐵 ∪ 𝐶
2. 𝐴 − 𝐵 𝑥 𝐶
3. 𝑃𝑜𝑤𝑒𝑟 𝑠𝑒𝑡 𝑜𝑓 𝐶
4. |𝑃(𝐵)|
B. SEQUENCES. Consider the sequence {Sn} defined by Sn = 2n – 5, where 𝒏 ≥ −𝟏.
Find for:
1. ∑𝑆𝑖1𝑖=−1
2. ∏𝑆𝑖4𝑖=2
C. RELATION. Consider X = {-3, -2, -1, 0, 1} defined by (x,y) ∈ R if x ≥ y.
Find for:
1. Elements of R (3 pts)
2. Domain and Range of R (2 pts)
3. Draw the digraph (3 pts)
4. Identify the properties of R (2pts)
A.
1 B"\\cup" C={0,2,4,6,b,c,d}
2."A-B \\times C" ={-1,1} x {b,c,d}={(-1,b),(-1,c),(-1,d),(1,b),(1,c),(1,d)}
3.Power set of C={"\\phi" ,{b},{c},{d},{b,c},{b,d},{c,d},{b,c,d}}
4."|P(B)|=2^4=16"
B. 1."\\sum_{i=-1}^{i=1}S_i=\\sum _{i=-1}^{i=1}2i+5=2(-1)+5+2(0)+5+2(1)+5=15"
2."\\sum_{i=2}^{i=4}S_i=\\sum _{i=2}^{i=4}(2i+5)=2(2)+5+2(3)+5+2(4)+5=4+6+8+15=33"
C.X={-3,-2,-1,0,1}
Relation R is defined as-
R={(-2,-3),(-1,-3),(-1,-2),(0,-3),(0,-2),(0,-1),(1,-3),(1,-2),(1,-1),(1,0)}
1.Elements of R are (-2,-3),(-1,-3),(-1,-2),(0,-3),(0,-2),(0,-1),(1,-3),(1,-2),(1,-1),(1,0)
2.Domain of R={-2,-1,0,1}
Range of R ={-3,-2,-1,0}
3.Diagraph is-
4.Properties of R-
(i) R is the subset of the cartesian product form from the given set.
(ii) R can be reflexive,transitive and symmetric in nature.
Comments
Leave a comment