. PROBLEM SOLVING.
A. SET. Let A, B and C are sets and U be universal set.
U = {-1, 0, 1, 2, 3, 4, 5, 6, a, b, c, d, e}
A = {-1, 1, 2, 4}
B = {0, 2, 4, 6}
C = {b, c, d}
Find for the following. Show complete solutions. (3 pts each)
1. π΅ βͺ πΆ
2. π΄ β π΅ π₯ πΆ
3. πππ€ππ π ππ‘ ππ πΆ
4. |π(π΅)|
B. SEQUENCES. Consider the sequence {Sn} defined by Sn = 2n β 5, where π β₯ βπ.
Find for:
1. βππ1π=β1
2. βππ4π=2
C. RELATION. Consider X = {-3, -2, -1, 0, 1} defined by (x,y) β R if x β₯ y.
Find for:
1. Elements of R (3 pts)
2. Domain and Range of R (2 pts)
3. Draw the digraph (3 pts)
4. Identify the properties of R (2pts)
A.
1 B C={0,2,4,6,b,c,d}
2. ={-1,1} x {b,c,d}={(-1,b),(-1,c),(-1,d),(1,b),(1,c),(1,d)}
3.Power set of C={ ,{b},{c},{d},{b,c},{b,d},{c,d},{b,c,d}}
4.
B. 1.
2.
C.X={-3,-2,-1,0,1}
Relation R is defined as-
R={(-2,-3),(-1,-3),(-1,-2),(0,-3),(0,-2),(0,-1),(1,-3),(1,-2),(1,-1),(1,0)}
1.Elements of R are (-2,-3),(-1,-3),(-1,-2),(0,-3),(0,-2),(0,-1),(1,-3),(1,-2),(1,-1),(1,0)
2.Domain of R={-2,-1,0,1}
Range of R ={-3,-2,-1,0}
3.Diagraph is-
4.Properties of R-
(i) R is the subset of the cartesian product form from the given set.
(ii) R can be reflexive,transitive and symmetric in nature.
Comments
Leave a comment