Use the table of propositional logical equivalences to show that ¬(p ∨
¬(p ∧)) is a contradiction.
"\\neg(p\\vee \\neg(p\\wedge q)\\\\\n\\iff \\neg p \\wedge \\neg(\\neg(p \\wedge q) \\text{ De Morgan's Law}\\\\\n\\iff \\neg p \\wedge(p \\wedge q) \\text{ Double Negation Law}\\\\\n\\iff (\\neg p\\wedge p) \\wedge q \\text{ Associativity Law}\\\\\n\\iff F \\wedge q \\text{ Contradiction}\\\\\n\\iff F \\text{ Domination Law}\\\\\n\\text{Hence the statement is a Contradiction.}"
Comments
Leave a comment