Question #182231

Use the table of propositional logical equivalences to show that ¬(p ∨

¬(p ∧)) is a contradiction.


1
Expert's answer
2021-05-02T16:04:03-0400

¬(p¬(pq)    ¬p¬(¬(pq) De Morgan’s Law    ¬p(pq) Double Negation Law    (¬pp)q Associativity Law    Fq Contradiction    F Domination LawHence the statement is a Contradiction.\neg(p\vee \neg(p\wedge q)\\ \iff \neg p \wedge \neg(\neg(p \wedge q) \text{ De Morgan's Law}\\ \iff \neg p \wedge(p \wedge q) \text{ Double Negation Law}\\ \iff (\neg p\wedge p) \wedge q \text{ Associativity Law}\\ \iff F \wedge q \text{ Contradiction}\\ \iff F \text{ Domination Law}\\ \text{Hence the statement is a Contradiction.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS