Answer to Question #175237 in Discrete Mathematics for kislay

Question #175237

Find the number of integers between 1 and 300 both inclusive that are divisible by the

following types:

(i). at-least one of 3, 5, 7.

(ii). 3 and 5 but not 7.

(iii). 5 but neither 3 nor 7


1
Expert's answer
2021-03-26T07:20:52-0400

Solution:

Let

"\\begin{array}{l}\nA=\\{n \\in Z \\mid(1 \\leq n \\leq 300) \\wedge(3 \\mid n)\\} \\\\\nB=\\{n \\in Z \\mid(1 \\leq n \\leq 300) \\wedge(5 \\mid n)\\} \\\\\nC=\\{n \\in Z \\mid(1 \\leq n \\leq 300) \\wedge(7 \\mid n)\\}\n\\end{array}"

Then,

"\\begin{array}{l}\n|\\mathrm{A}|=\\lfloor 300 \/ 3\\rfloor=100 \\\\\n|\\mathrm{~B}|=\\lfloor 300 \/ 5\\rfloor=60 \\\\\n|\\mathrm{C}|=\\lfloor 300 \/ 7\\rfloor=42\n\\end{array}" ...(i)

(i) We need to find "|A \\cup B \\cup C|"

By the principle of inclusion-exclusion

"|\\mathrm{A} \\cup \\mathrm{B} \\cup \\mathrm{C}|=|\\mathrm{A}|+|\\mathrm{B}|+|\\mathrm{C}|-[|\\mathrm{A} \\cap \\mathrm{B}|+|\\mathrm{A} \\cap \\mathrm{C}|+|\\mathrm{B} \\cap \\mathrm{C}|]+|\\mathrm{A} \\cap \\mathrm{B} \\cap \\mathrm{C}|"

Using (i),

"\\begin{aligned}\n|\\mathrm{A}|=\\lfloor 300 \/ 3\\rfloor=100 & &|\\mathrm{~A} \\cap \\mathrm{B}|=\\lfloor 300 \/ 15\\rfloor=20 \\\\\n|\\mathrm{~B}|=\\lfloor 300 \/ 5\\rfloor=60 & &|\\mathrm{~A} \\cap \\mathrm{C}|=\\lfloor 300 \/ 21\\rfloor=100 \\\\\n|\\mathrm{C}|=\\lfloor 300 \/ 7\\rfloor=42 & &|\\mathrm{~B} \\cap \\mathrm{C}|=\\lfloor 300 \/ 35\\rfloor=8 \\\\\n& &|\\mathrm{~A} \\cap \\mathrm{B} \\cap \\mathrm{C}|=\\lfloor 300 \/ 105\\rfloor=2\n\\end{aligned}"

"\\therefore |A \\cup B \\cup C|=100+60+42-(20+14+8)+2=162"

(ii) We need to find "|(A \\cap B)-C|"

By the definition of set-minus:

"|(A \\cap B)-C|=|A \\cap B|-|A \\cap B \\cap C|=20-2=18"

(iii) We need to find "|B-(A \\cup C)|"

Now, "|B-(A \\cup C)|=|B|-|B \\cap(A \\cup C)|"

Distributing B over the intersection

"\\begin{aligned}\n|B \\cap(A \\cup C)| &=|(B \\cap A) \\cup(B \\cap C)| \\\\\n&=|B \\cap A|+|B \\cap C|-|(B \\cap A) \\cap(B \\cap C)| \\\\\n&=|B \\cap A|+|B \\cap C|-|B \\cap A \\cap C| \\\\\n&=20+8-2=26\n\\end{aligned}"

Thus, "|B-(A \\cup C)|=|B|-|B \\cap(A \\cup C)|=60-26=34"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS