Find the number of integers between 1 and 300 both inclusive that are divisible by the
following types:
(i). at-least one of 3, 5, 7.
(ii). 3 and 5 but not 7.
(iii). 5 but neither 3 nor 7
Solution:
Let
"\\begin{array}{l}\nA=\\{n \\in Z \\mid(1 \\leq n \\leq 300) \\wedge(3 \\mid n)\\} \\\\\nB=\\{n \\in Z \\mid(1 \\leq n \\leq 300) \\wedge(5 \\mid n)\\} \\\\\nC=\\{n \\in Z \\mid(1 \\leq n \\leq 300) \\wedge(7 \\mid n)\\}\n\\end{array}"
Then,
"\\begin{array}{l}\n|\\mathrm{A}|=\\lfloor 300 \/ 3\\rfloor=100 \\\\\n|\\mathrm{~B}|=\\lfloor 300 \/ 5\\rfloor=60 \\\\\n|\\mathrm{C}|=\\lfloor 300 \/ 7\\rfloor=42\n\\end{array}" ...(i)
(i) We need to find "|A \\cup B \\cup C|"
By the principle of inclusion-exclusion
"|\\mathrm{A} \\cup \\mathrm{B} \\cup \\mathrm{C}|=|\\mathrm{A}|+|\\mathrm{B}|+|\\mathrm{C}|-[|\\mathrm{A} \\cap \\mathrm{B}|+|\\mathrm{A} \\cap \\mathrm{C}|+|\\mathrm{B} \\cap \\mathrm{C}|]+|\\mathrm{A} \\cap \\mathrm{B} \\cap \\mathrm{C}|"
Using (i),
"\\begin{aligned}\n|\\mathrm{A}|=\\lfloor 300 \/ 3\\rfloor=100 & &|\\mathrm{~A} \\cap \\mathrm{B}|=\\lfloor 300 \/ 15\\rfloor=20 \\\\\n|\\mathrm{~B}|=\\lfloor 300 \/ 5\\rfloor=60 & &|\\mathrm{~A} \\cap \\mathrm{C}|=\\lfloor 300 \/ 21\\rfloor=100 \\\\\n|\\mathrm{C}|=\\lfloor 300 \/ 7\\rfloor=42 & &|\\mathrm{~B} \\cap \\mathrm{C}|=\\lfloor 300 \/ 35\\rfloor=8 \\\\\n& &|\\mathrm{~A} \\cap \\mathrm{B} \\cap \\mathrm{C}|=\\lfloor 300 \/ 105\\rfloor=2\n\\end{aligned}"
"\\therefore |A \\cup B \\cup C|=100+60+42-(20+14+8)+2=162"
(ii) We need to find "|(A \\cap B)-C|"
By the definition of set-minus:
"|(A \\cap B)-C|=|A \\cap B|-|A \\cap B \\cap C|=20-2=18"
(iii) We need to find "|B-(A \\cup C)|"
Now, "|B-(A \\cup C)|=|B|-|B \\cap(A \\cup C)|"
Distributing B over the intersection
"\\begin{aligned}\n|B \\cap(A \\cup C)| &=|(B \\cap A) \\cup(B \\cap C)| \\\\\n&=|B \\cap A|+|B \\cap C|-|(B \\cap A) \\cap(B \\cap C)| \\\\\n&=|B \\cap A|+|B \\cap C|-|B \\cap A \\cap C| \\\\\n&=20+8-2=26\n\\end{aligned}"
Thus, "|B-(A \\cup C)|=|B|-|B \\cap(A \\cup C)|=60-26=34"
Comments
Leave a comment