Question #175237

Find the number of integers between 1 and 300 both inclusive that are divisible by the

following types:

(i). at-least one of 3, 5, 7.

(ii). 3 and 5 but not 7.

(iii). 5 but neither 3 nor 7


1
Expert's answer
2021-03-26T07:20:52-0400

Solution:

Let

A={nZ(1n300)(3n)}B={nZ(1n300)(5n)}C={nZ(1n300)(7n)}\begin{array}{l} A=\{n \in Z \mid(1 \leq n \leq 300) \wedge(3 \mid n)\} \\ B=\{n \in Z \mid(1 \leq n \leq 300) \wedge(5 \mid n)\} \\ C=\{n \in Z \mid(1 \leq n \leq 300) \wedge(7 \mid n)\} \end{array}

Then,

A=300/3=100 B=300/5=60C=300/7=42\begin{array}{l} |\mathrm{A}|=\lfloor 300 / 3\rfloor=100 \\ |\mathrm{~B}|=\lfloor 300 / 5\rfloor=60 \\ |\mathrm{C}|=\lfloor 300 / 7\rfloor=42 \end{array} ...(i)

(i) We need to find ABC|A \cup B \cup C|

By the principle of inclusion-exclusion

ABC=A+B+C[AB+AC+BC]+ABC|\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}|=|\mathrm{A}|+|\mathrm{B}|+|\mathrm{C}|-[|\mathrm{A} \cap \mathrm{B}|+|\mathrm{A} \cap \mathrm{C}|+|\mathrm{B} \cap \mathrm{C}|]+|\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}|

Using (i),

A=300/3=100 AB=300/15=20 B=300/5=60 AC=300/21=100C=300/7=42 BC=300/35=8 ABC=300/105=2\begin{aligned} |\mathrm{A}|=\lfloor 300 / 3\rfloor=100 & &|\mathrm{~A} \cap \mathrm{B}|=\lfloor 300 / 15\rfloor=20 \\ |\mathrm{~B}|=\lfloor 300 / 5\rfloor=60 & &|\mathrm{~A} \cap \mathrm{C}|=\lfloor 300 / 21\rfloor=100 \\ |\mathrm{C}|=\lfloor 300 / 7\rfloor=42 & &|\mathrm{~B} \cap \mathrm{C}|=\lfloor 300 / 35\rfloor=8 \\ & &|\mathrm{~A} \cap \mathrm{B} \cap \mathrm{C}|=\lfloor 300 / 105\rfloor=2 \end{aligned}

ABC=100+60+42(20+14+8)+2=162\therefore |A \cup B \cup C|=100+60+42-(20+14+8)+2=162

(ii) We need to find (AB)C|(A \cap B)-C|

By the definition of set-minus:

(AB)C=ABABC=202=18|(A \cap B)-C|=|A \cap B|-|A \cap B \cap C|=20-2=18

(iii) We need to find B(AC)|B-(A \cup C)|

Now, B(AC)=BB(AC)|B-(A \cup C)|=|B|-|B \cap(A \cup C)|

Distributing B over the intersection

B(AC)=(BA)(BC)=BA+BC(BA)(BC)=BA+BCBAC=20+82=26\begin{aligned} |B \cap(A \cup C)| &=|(B \cap A) \cup(B \cap C)| \\ &=|B \cap A|+|B \cap C|-|(B \cap A) \cap(B \cap C)| \\ &=|B \cap A|+|B \cap C|-|B \cap A \cap C| \\ &=20+8-2=26 \end{aligned}

Thus, B(AC)=BB(AC)=6026=34|B-(A \cup C)|=|B|-|B \cap(A \cup C)|=60-26=34


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS