Show that -p → (q + r) and q→ (p V r) are logically equivalent.
Let us find the truth table for "q\\to (p \\lor r)":
"\\begin{array}{|c|c|c|c|c|c|c|c|} \n\\hline\np & q & r & p\\lor r & q\\to(p\\lor r)\\\\\n\\hline\n0 & 0 & 0 & 0 & 1 \\\\\n\\hline\n0 & 0 & 1 & 1 & 1 \\\\\n\\hline\n0 & 1 & 0 & 0 & 0 \\\\\n\\hline\n0 & 1 & 1 & 1 & 1 \\\\\n\\hline\n1 & 0 & 0 & 1 & 1 \\\\\n\\hline\n1 & 0 & 1 & 1 & 1 \\\\\n\\hline\n1 & 1 & 0 & 1 & 1 \\\\\n\\hline\n1 & 1 & 1 & 1 & 1 \\\\\n\\hline\n\\end{array}"
It follows that the truth value of "|q\\to (p \\lor r)|=0" if and only if "|p|=|r|=0", "|q|=1". On the other hand, for "|p|=|r|=0", "|q|=1" we have that "|q+r|=1+0=1", and therefore by definition of implication, "|-p \u2192 (q + r)|=1". Consequently, the formulas "-p \u2192 (q + r)" and "q\u2192 (p\\lor r)" are not logically equivalent.
Comments
Leave a comment