Question #172406

Show that -p → (q + r) and q→ (p V r) are logically equivalent.


1
Expert's answer
2021-03-18T09:12:18-0400

Let us find the truth table for  q(pr)q\to (p \lor r):


pqrprq(pr)0000100111010000111110011101111101111111\begin{array}{|c|c|c|c|c|c|c|c|} \hline p & q & r & p\lor r & q\to(p\lor r)\\ \hline 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 \\ \hline 1 & 0 & 0 & 1 & 1 \\ \hline 1 & 0 & 1 & 1 & 1 \\ \hline 1 & 1 & 0 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 \\ \hline \end{array}


It follows that the truth value of q(pr)=0|q\to (p \lor r)|=0 if and only if p=r=0|p|=|r|=0, q=1|q|=1. On the other hand, for p=r=0|p|=|r|=0, q=1|q|=1 we have that q+r=1+0=1|q+r|=1+0=1, and therefore by definition of implication, p(q+r)=1|-p → (q + r)|=1. Consequently, the formulas p(q+r)-p → (q + r) and q(pr)q→ (p\lor r) are not logically equivalent.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS