Let us find the truth table for  q→(p∨r):
p00001111q00110011r01010101p∨r01011111q→(p∨r)11011111
It follows that the truth value of ∣q→(p∨r)∣=0  if and only if ∣p∣=∣r∣=0,  ∣q∣=1. On the other hand, for ∣p∣=∣r∣=0, ∣q∣=1 we have that ∣q+r∣=1+0=1, and therefore  by definition of implication, ∣−p→(q+r)∣=1. Consequently,  the formulas  −p→(q+r)  and q→(p∨r)  are not logically equivalent.
Comments