C. RELATION.
Given the following set:
1. X = {1, 2, 3, 4, 5} defined by the rule (x, y) ∈ R if x + y ≤ 6
a. List the elements of R
b. Find the domain of R
c. Find the range of R
d. Draw the digraph
e. Properties of the RelationÂ
Let's list the elements of R:
"R = \\{ (1,1),\\,(1,2),\\,(1,3),\\,(1,4),\\,(1,5),\\,(2,1),\\,(2,2),\\,(2,3),\\,(2,4),\\,(3,1),\\,(3,2),\\,(3,3),\\,(4,1),\\,(4,2),\\,(5,1)\\}"
Find the domain of the relation:
"D(R) = \\{ x|(x,y) \\in R\\} = \\{ 1,2,3,4,5\\} = X"
Find the range of the relation:
"E(R) = \\{ y|(x,y) \\in R\\} = \\{ 1,2,3,4,5\\} = X"
Draw the digraph:
Find properties of the Relation:
"(5,5) \\notin R" so R is not reflexive
"(1,1) \\in R" so R is not irreflexive
If "x + y \\le 6" then "y+x \\le 6" so "\\left( {x,y} \\right) \\in R \\Leftrightarrow \\left( {y,x} \\right) \\in R" - R is symmetric relation.
"(5,1) \\in R,\\,(1,4) \\in R" , but "(5,4) \\notin R" so R is not transitive relation.
Comments
Leave a comment