Question #171120

C. RELATION.

Given the following set:

1. X = {1, 2, 3, 4, 5} defined by the rule (x, y) ∈ R if x + y ≤ 6


a. List the elements of R

b. Find the domain of R

c. Find the range of R

d. Draw the digraph

e. Properties of the Relation 


1
Expert's answer
2021-03-15T12:20:36-0400

Let's list the elements of R:

R={(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),(5,1)}R = \{ (1,1),\,(1,2),\,(1,3),\,(1,4),\,(1,5),\,(2,1),\,(2,2),\,(2,3),\,(2,4),\,(3,1),\,(3,2),\,(3,3),\,(4,1),\,(4,2),\,(5,1)\}

Find the domain  of the relation:

D(R)={x(x,y)R}={1,2,3,4,5}=XD(R) = \{ x|(x,y) \in R\} = \{ 1,2,3,4,5\} = X

Find the range  of the relation:

E(R)={y(x,y)R}={1,2,3,4,5}=XE(R) = \{ y|(x,y) \in R\} = \{ 1,2,3,4,5\} = X

Draw the digraph:



Find properties of the Relation:

(5,5)R(5,5) \notin R so R is not reflexive

(1,1)R(1,1) \in R so R is not irreflexive

If x+y6x + y \le 6 then y+x6y+x \le 6 so (x,y)R(y,x)R\left( {x,y} \right) \in R \Leftrightarrow \left( {y,x} \right) \in R - R is symmetric relation.

(5,1)R,(1,4)R(5,1) \in R,\,(1,4) \in R , but (5,4)R(5,4) \notin R so R is not transitive relation.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS