Let x∈A∩(B∪C) , then x∈A and x∈B∪C . Then x∈A and x∈B or x∈C. Then x∈A and x∈B or x∈A and x∈C, but then x∈(A∩B)∪(A∩C) , from where A∩(B∪C)⊂(A∩B)∪(A∩C)
Let x∈(A∩B)∪(A∩C) . Then x∈A and x∈B or x∈A and x∈C. Then x∈A and x∈B or x∈C, then x∈A and x∈B∪C , but then x∈A∩(B∪C), from where A∩(B∪C)⊃(A∩B)∪(A∩C) .
Since A∩(B∪C)⊂(A∩B)∪(A∩C) and A∩(B∪C)⊃(A∩B)∪(A∩C) then A∩(B∪C)=(A∩B)∪(A∩C) .
The statement is proven
Comments
Leave a comment