Answer to Question #169987 in Discrete Mathematics for EUGINE HAWEZA

Question #169987

a.      Let A and B and C be sets, prove that A∩(BUC) = (A∩B)U( A∩C). 


1
Expert's answer
2021-03-10T11:16:10-0500

Let xA(BC)x \in A \cap \left( {B \cup C} \right) , then xAx \in A and xBCx \in B \cup C . Then xAx \in A and xBx \in B or xCx \in C. Then xAx \in A and xBx \in B or xAx \in A and xCx \in C, but then x(AB)(AC)x \in \left( {A \cap B} \right) \cup \left( {A \cap C} \right) , from where A(BC)(AB)(AC)A \cap \left( {B \cup C} \right) \subset \left( {A \cap B} \right) \cup \left( {A \cap C} \right)

Let x(AB)(AC)x \in \left( {A \cap B} \right) \cup \left( {A \cap C} \right) . Then xAx \in A and xBx \in B or xAx \in A and xCx \in C. Then xAx \in A and xBx \in B or xCx \in C, then xAx \in A and xBCx \in B \cup C , but then xA(BC)x \in A \cap \left( {B \cup C} \right), from where A(BC)(AB)(AC)A \cap \left( {B \cup C} \right) \supset \left( {A \cap B} \right) \cup \left( {A \cap C} \right) .

Since A(BC)(AB)(AC)A \cap \left( {B \cup C} \right) \subset \left( {A \cap B} \right) \cup \left( {A \cap C} \right) and A(BC)(AB)(AC)A \cap \left( {B \cup C} \right) \supset \left( {A \cap B} \right) \cup \left( {A \cap C} \right) then A(BC)=(AB)(AC)A \cap \left( {B \cup C} \right) = \left( {A \cap B} \right) \cup \left( {A \cap C} \right) .

The statement is proven


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment