a.      Let A and B and C be sets, prove that A∩(BUC) = (A∩B)U( A∩C).Â
Let "x \\in A \\cap \\left( {B \\cup C} \\right)" , then "x \\in A" and "x \\in B \\cup C" . Then "x \\in A" and "x \\in B" or "x \\in C". Then "x \\in A" and "x \\in B" or "x \\in A" and "x \\in C", but then "x \\in \\left( {A \\cap B} \\right) \\cup \\left( {A \\cap C} \\right)" , from where "A \\cap \\left( {B \\cup C} \\right) \\subset \\left( {A \\cap B} \\right) \\cup \\left( {A \\cap C} \\right)"
Let "x \\in \\left( {A \\cap B} \\right) \\cup \\left( {A \\cap C} \\right)" . Then "x \\in A" and "x \\in B" or "x \\in A" and "x \\in C". Then "x \\in A" and "x \\in B" or "x \\in C", then "x \\in A" and "x \\in B \\cup C" , but then "x \\in A \\cap \\left( {B \\cup C} \\right)", from where "A \\cap \\left( {B \\cup C} \\right) \\supset \\left( {A \\cap B} \\right) \\cup \\left( {A \\cap C} \\right)" .
Since "A \\cap \\left( {B \\cup C} \\right) \\subset \\left( {A \\cap B} \\right) \\cup \\left( {A \\cap C} \\right)" and "A \\cap \\left( {B \\cup C} \\right) \\supset \\left( {A \\cap B} \\right) \\cup \\left( {A \\cap C} \\right)" then "A \\cap \\left( {B \\cup C} \\right) = \\left( {A \\cap B} \\right) \\cup \\left( {A \\cap C} \\right)" .
The statement is proven
Comments
Leave a comment