Question #166065

Solve

an+2 = 4an+1 + 21an; n  0 and a0 = 3; a1 = 4


1
Expert's answer
2021-02-25T01:51:36-0500

Given recurrence relation is-

an+2=4an+1+21ana_{n+2}=4a_{n+1}+21a_n Where, ao=3,a1=4a_o=3,a_1=4


The characterstics equation of the above relation is given by-


x2=4x+21x24x21=0(x7)(x+3)=0x^2=4x+21\\\Rightarrow x^2-4x-21=0\\ \Rightarrow (x-7)(x+3)=0


Then the roots of equation are 7,37,-3

So ,

an=c1(7)n+c2(3)n     (1)a_n=c_1(7)^n+c_2(-3)^n~~~~~-(1)


At n=0n=0

ao=c1+c1c1+c2=3     (2)a_o=c_1+c_1\Rightarrow c_1+c_2=3~~~~~-(2)


At n=1n=1

a1=7c13c27c13c2=4   (3)a_1=7c_1-3c_2\Rightarrow 7c_1-3c_2=4~~~-(3)


On solving equation 2 and 3, we get-

c1=1.3,c2=1.7c_1=1.3,c_2=1.7


Puuting the above values in eqs.(1)-

Hence eqs.(1)    \implies


an=(1.3)7n+(1.7)(3)na_n=(1.3)7^n+(1.7)(-3)^n



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS