a2+5b2+c2⩾4ab+2bca^2+5b^2+c^2\geqslant4ab+2bca2+5b2+c2⩾4ab+2bc
a2−4ab+5b2+c2−2bc⩾0a^2-4ab+5b^2+c^2-2bc\geqslant0a2−4ab+5b2+c2−2bc⩾0
(a2−4ab+4b2)+(c2−2bc+b2)⩾0(a^2-4ab+4b^2)+(c^2-2bc+b^2)\geqslant0(a2−4ab+4b2)+(c2−2bc+b2)⩾0
(a−2b)2+(c−b)2⩾0(a-2b)^2+(c-b)^2\geqslant0(a−2b)2+(c−b)2⩾0
the sum of two squares >= 0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment