Answer to Question #148124 in Discrete Mathematics for Promise Omiponle

Question #148124
Let C={A1, A2, ..., An} be a collection of finite sets that are pairwise disjoint. Further suppose that |Ai|=i. Compute |U(i=1 to n)Ai|, and write your answer in the simplest closed form possible.
1
Expert's answer
2020-12-16T20:04:24-0500

C={A1,A2,,An},Ai=ii=1nAi=A1A2An=A1+A2++AnSince they are disjoint=1+2++n=i=1ni=n(n+1)2C=\{A_1,A_2,\cdots, A_n\}, |A_i|=i\\ \left| \bigcup_{i=1}^nA_i\right|=\left|A_1 \bigcup A_2 \bigcup \cdots \bigcup A_n\right|\\ =|A_1|+|A_2|+ \cdots + |A_n|\\ \text{Since they are disjoint}\\ =1+2+ \cdots +n\\ = \sum_{i=1}^ni\\ =\frac{n(n+1)}{2}


Hence, i=1nAi=n(n+1)2.\left| \bigcup_{i=1}^nA_i\right|=\frac{n(n+1)}{2}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment