Let "x" be a real number.The floor function "\\lfloor x \\rfloor" is defined to be the greatest integer less than or equal to the real number "x". The fractional part function "\\{ x \\}" is defined to be "\\{x\\}= x -\\lfloor x \\rfloor". Define two functions "p,q:\\mathbb R\\to\\mathbb R" with "q(x)" not equal to 0 for all "x" in the following way: "p(x)=2\\{x\\}-1, q(x)=\\begin{cases}4\\{x\\}-1,\\ x\\ne\\frac{1}{4}+n,n\\in\\mathbb N \\\\2,\\ x=\\frac{1}{4}+n,n\\in\\mathbb N\\end{cases}".
Then the function "\u03bb:\\mathbb R\\to\\mathbb R," "\u03bb(x)= q(x)(p(x)+1)=\\begin{cases}(4\\{x\\}-1)(2\\{x\\}), \\ x\\ne\\frac{1}{4}+n,n\\in\\mathbb N\\\\ 1,\\ \\ \\ x=\\frac{1}{4}+n,n\\in\\mathbb N\\end{cases}" has the following properties:
"\\lambda(n)=(4\\{n\\}-1)(2\\{n\\}) =-1\\cdot0=0,\\ \\ \\lambda(x+1)= \\lambda(x)," and
"\\lambda(n+\\frac{1}{2})=(4\\{n+\\frac{1}{2}\\}-1)(2\\{n+\\frac{1}{2}\\})=(4\\cdot\\frac{1}{2}-1)(2\\cdot\\frac{1}{2})=1"
for all "x \\in\\mathbb R, n\\in\\mathbb N."
Comments
Leave a comment