Question #144598
You have given a function λ:R-> R with the following properties (x ∈ R, n∈ N) :
Λ(n) =0, λ(x+1)= λ(x), λ(n+1/2)=1
Find two functions p,q:R-> Rwith q(x) not equal to 0 for all x such that λ(x)= q(x)(p(x)+1)
1
Expert's answer
2020-11-17T07:35:23-0500

Let xx be a real number.The floor function x\lfloor x \rfloor is defined to be the greatest integer less than or equal to the real number xx. The fractional part function {x}\{ x \}  is defined to be {x}=xx\{x\}= x -\lfloor x \rfloor. Define two functions p,q:RRp,q:\mathbb R\to\mathbb R with q(x)q(x) not equal to 0 for all xx in the following way: p(x)=2{x}1,q(x)={4{x}1, x14+n,nN2, x=14+n,nNp(x)=2\{x\}-1, q(x)=\begin{cases}4\{x\}-1,\ x\ne\frac{1}{4}+n,n\in\mathbb N \\2,\ x=\frac{1}{4}+n,n\in\mathbb N\end{cases}.


Then the function λ:RR,λ:\mathbb R\to\mathbb R, λ(x)=q(x)(p(x)+1)={(4{x}1)(2{x}), x14+n,nN1,   x=14+n,nNλ(x)= q(x)(p(x)+1)=\begin{cases}(4\{x\}-1)(2\{x\}), \ x\ne\frac{1}{4}+n,n\in\mathbb N\\ 1,\ \ \ x=\frac{1}{4}+n,n\in\mathbb N\end{cases} has the following properties:


λ(n)=(4{n}1)(2{n})=10=0,  λ(x+1)=λ(x),\lambda(n)=(4\{n\}-1)(2\{n\}) =-1\cdot0=0,\ \ \lambda(x+1)= \lambda(x), and


λ(n+12)=(4{n+12}1)(2{n+12})=(4121)(212)=1\lambda(n+\frac{1}{2})=(4\{n+\frac{1}{2}\}-1)(2\{n+\frac{1}{2}\})=(4\cdot\frac{1}{2}-1)(2\cdot\frac{1}{2})=1


for all xR,nN.x \in\mathbb R, n\in\mathbb N.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS