A.
(i) a∣b⇒b=ak1.a∣c⇒c=ak2⇒(b+c)=a(k1+k2)⇒a∣(b+c).a|b\Rightarrow b=ak_1. a|c\Rightarrow c=ak_2\Rightarrow (b+c)=a(k_1+k_2)\Rightarrow a|(b+c).a∣b⇒b=ak1.a∣c⇒c=ak2⇒(b+c)=a(k1+k2)⇒a∣(b+c).
(ii) a∣b⇒b=ak⇒bc=akc⇒a∣bc.a|b\Rightarrow b=ak\Rightarrow bc=akc\Rightarrow a|bc.a∣b⇒b=ak⇒bc=akc⇒a∣bc.
(iii) a∣b⇒b=ax. b∣c⇒c=by=axy⇒a∣c.a|b\Rightarrow b=ax. \ b|c\Rightarrow c=by=axy\Rightarrow a|c.a∣b⇒b=ax. b∣c⇒c=by=axy⇒a∣c.
B.
1231001= 123×102×102+1001=(22)×(−1)×(−1)+(101×10−9)\times 10^2\times 10^2 +1001= (22)\times (-1)\times (-1)+(101\times 10 -9)×102×102+1001=(22)×(−1)×(−1)+(101×10−9) modulo 101
= 22-9=13.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments