Question #141756
Let A= {1,2,3,4,5,6} and R be a relation on A, such that
R = [(x, y): |x-y| =2]. Use warshall’s Algorithm to find the matrix of transitive closure of R. and draw its digraph
1
Expert's answer
2020-11-02T20:42:57-0500

R={(1,3),(2,4),(3,1),(3,5),(4,2),(4,6),(5,3),(6,4)}R = \{(1,3), (2,4), (3,1), (3,5), (4,2), (4,6), (5,3),(6,4)\}


Let us draw digraph of R:R:





Here are the steps of the Warshall’s algorithm:


Step 1. Assign initial values W=MR,k=0W=M_R, k=0.


Step 2. Execute k:=k+1.k:=k+1.


Step 3. For all iki\ne k such that wik=1w_{ik}=1, and for all jj execute the operation wij=wijwkj.w_{ij}=w_{ij}\lor w_{kj}.


Step 4. If k=nk=n, then stop: we have the solution W=MRW=M_{R^*}, else go to the step 2.



n=A=6.n=|A|=6.


W(0)=MR=(001000000100100010010001001000000100)W^{(0)}=M_R=\left(\begin{array} {cccccc} 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0\\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)



W(1)=(001000000100101010010001001000000100)W^{(1)}=\left(\begin{array} {cccccc} 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0\\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)



W(2)=(001000000100101010010101001000000100)W^{(2)}=\left(\begin{array} {cccccc} 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0\\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)



W(3)=(101010000100101010010101101010000100)W^{(3)}=\left(\begin{array} {cccccc} 1 & 0 & 1 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 & 0 & 0\\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)


W(4)=(101010010101101010010101101010010101)W^{(4)}=\left(\begin{array} {cccccc} 1 & 0 & 1 & 0 & 1 & 0\\ 0 & 1 & 0 & 1 & 0 & 1\\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1\end{array}\right)


W(5)=(101010010101101010010101101010010101)W^{(5)}=\left(\begin{array} {cccccc} 1 & 0 & 1 & 0 & 1 & 0\\ 0 & 1 & 0 & 1 & 0 & 1\\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1\end{array}\right)


Thus, the matrix of transitive closure of RR is the following:


MR=W(6)=(101010010101101010010101101010010101)M_{R^*}=W^{(6)}=\left(\begin{array} {cccccc} 1 & 0 & 1 & 0 & 1 & 0\\ 0 & 1 & 0 & 1 & 0 & 1\\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1\end{array}\right)



Therefore, the transitive closure of RR is the following:



R={(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6),R^* = \{(1,1),(1,3),(1,5),(2,2), (2,4),(2,6), (3,1),(3,3), (3,5), (4,2),(4,4), (4,6),

(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)}(5,1), (5,3),(5,5),(6,2),(6,4),(6,6)\}


Let us draw digraph of R:R^* :



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS