Hint : Since you probably missed some degrees in the expression "(8n-14n+27)" , I can only complete part of the task.
Using mathematical induction, we prove that "(n^3+11n)" is divisible by "6" for "n\\in\\mathbb{Z}^+" .
1 STEP: Induction basis
"n=1\\to 1^3+11\\cdot1=12=2\\cdot6\\,\\,\\,\\vdots\\,\\,\\,6"
2 STEP : Inductive guess
"\\text{For all}\\,\\,\\,k\\le n\\,\\,\\,(k^3+11k)\\,\\,\\,\\vdots\\,\\,\\,6"3 STEP : Inductive transition, it is necessary to prove that
"\\text{For}\\,\\,\\,k=n+1\\to \\left((n+1)^3+11(n+1)\\right)\\,\\,\\,\\vdots\\,\\,\\,6""(n+1)^3+11(n+1)=n^3+3n^2+3n+1+11n+11=\\\\[0.3cm]\n=(n^3+11n)+(3n^2+3n)+12=\\\\[0.3cm]\n=\\underbrace{(n^3+11n)}_{\\text{divided into 6 hypothesis}}+3n(n+1)+6\\cdot 2"
It remains to understand why "3n(n+1)\\,\\,\\,\\vdots\\,\\,\\,6" .
1 case : "n=2k"
2 case : "n=2k+1"
Conclusion,
Q.E.D.
Comments
Leave a comment