Question #141024
For every integer n≥1,(n3+11n)⋅(8n−14n+27) is divisible by

6


7


42


84
1
Expert's answer
2020-11-02T20:56:52-0500

Hint : Since you probably missed some degrees in the expression (8n14n+27)(8n-14n+27) , I can only complete part of the task.


Using mathematical induction, we prove that (n3+11n)(n^3+11n) is divisible by 66 for nZ+n\in\mathbb{Z}^+ .

1 STEP: Induction basis

n=113+111=12=266n=1\to 1^3+11\cdot1=12=2\cdot6\,\,\,\vdots\,\,\,6

2 STEP : Inductive guess

For allkn(k3+11k)6\text{For all}\,\,\,k\le n\,\,\,(k^3+11k)\,\,\,\vdots\,\,\,6



3 STEP : Inductive transition, it is necessary to prove that

Fork=n+1((n+1)3+11(n+1))6\text{For}\,\,\,k=n+1\to \left((n+1)^3+11(n+1)\right)\,\,\,\vdots\,\,\,6

(n+1)3+11(n+1)=n3+3n2+3n+1+11n+11==(n3+11n)+(3n2+3n)+12==(n3+11n)divided into 6 hypothesis+3n(n+1)+62(n+1)^3+11(n+1)=n^3+3n^2+3n+1+11n+11=\\[0.3cm] =(n^3+11n)+(3n^2+3n)+12=\\[0.3cm] =\underbrace{(n^3+11n)}_{\text{divided into 6 hypothesis}}+3n(n+1)+6\cdot 2



It remains to understand why 3n(n+1)63n(n+1)\,\,\,\vdots\,\,\,6 .

1 case : n=2kn=2k


3n(n+1)=3(2k)(2k+1)=6(k(2k+1))63n(n+1)=3\cdot(2k)\cdot(2k+1)=6\cdot\left(k(2k+1)\right)\,\,\,\vdots\,\,\,6



2 case : n=2k+1n=2k+1


3n(n+1)=3(2k+1)(2k+1+1)=6((k+1)(2k+1))63n(n+1)=3\cdot(2k+1)\cdot(2k+1+1)=6\cdot\left((k+1)(2k+1)\right)\,\,\vdots\,\,6

Conclusion,


(n+1)3+11(n+1)=(n3+11n)+3n(n+1)+626(n+1)^3+11(n+1)=(n^3+11n)+3n(n+1)+6\cdot2\,\,\vdots\,\,6

Q.E.D.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS