If x=∣m2−n2∣, y=2mn, then
x2+y2=(m2−n2)2+(2mn)2=(m2)2−2m2n2+(n2)2+4m2n2=m4−2m2n2+n4+4m2n2=m4+2m2n2+n4=(m2+n2)2=z2 .
Since there are infinitely many pairs (m=1, n=i), i=1,2,.... and
yi=2⋅1⋅i=yj=2⋅1⋅j,zi=12+i2=zj=12+j2 for i=j, then the equation has infinitely many integer solutions.
Comments